Derived Category: Homework Set 2

Problem A

Let \mathcal{A} be an abelian category. Let $i: x \hookrightarrow z$ and $j: y \hookrightarrow$ be two injective arrows and let $p: z \twoheadrightarrow z/x$ and $q: z \twoheadrightarrow z/y$ be the associated quotient objects. We define $x \cap y$ by the following Cartesian square

$$\begin{array}{cccc} x \cap y & \xrightarrow{j'} x \\ & \downarrow_{i'} & & \downarrow_{i} \\ y & \xrightarrow{j} z \end{array}$$

- (1) Show that the arrows $j': x \cap y \to x$ and $i': x \cap y \to y$ are all injective.
- (2) Show that

$$\operatorname{coker}(i - j : x \oplus y \longrightarrow z) \cong \operatorname{coker}(-p \circ j : y \longrightarrow z/x)$$
$$\cong \operatorname{coker}(q \circ i : x \longrightarrow z/y)$$

(3) Show that

$$x \cap y \cong \ker(i - j : x \oplus y \longrightarrow z)$$
$$\cong \ker(p \circ j : y \longrightarrow z/x)$$
$$\cong \ker(q \circ i : x \longrightarrow z/y)$$

- (4) Let $\langle x \cup y \rangle \hookrightarrow z$ be the image of $i j : x \oplus y \to z$. Show that we have injective arrows $\bar{i} : x \hookrightarrow \langle x \cup y \rangle$ and $\bar{j} : y \hookrightarrow \langle x \cup y \rangle$.
- (5) Show that the square

$$\begin{array}{ccc} x \cap y & \xrightarrow{j'} & x \\ \downarrow^{i'} & & \downarrow^{\bar{i}} \\ y & \xrightarrow{\bar{j}} & \langle x \cup y \rangle \end{array}$$

is both cartesian and cocartesian.

Problem B

Let R be a commutative ring and let A be the category of R-modules. Let

$$0 \longrightarrow A^{\bullet} \xrightarrow{\alpha} B^{\bullet} \xrightarrow{\beta} C^{\bullet} \longrightarrow 0$$

be a short exact sequence of complexes of R-modules.

- (1) Assume that the above sequence is termwise split by the arrows $s^n: C^n \to B^n$ and $\pi^n: B^n \to A^n$. Show that $\delta^n = \pi^{n+1} \circ d_B^n \circ s^n: C^n \to A^{n+1}$ defines a morphism $\delta: C^{\bullet} \to A^{\bullet}[1]$ of complexes. As a morphism in $K(\mathcal{A})$, δ is independent of the choice of the splitting arrows $\{s^n\}$ and $\{\pi^n\}$.
- (2) The induced map on cohomology $\delta: H^n(C^{\bullet}) \to H^{n+1}(A^{\bullet})$ is the connecting morphism in the associated long exact sequence in cohomology

1

$$\cdots \xrightarrow{\delta} \operatorname{H}^{n}(A^{\bullet}) \xrightarrow{\alpha} \operatorname{H}^{n}(B^{\bullet}) \xrightarrow{\beta} \operatorname{H}^{n}(C^{\bullet}) \xrightarrow{\delta} \operatorname{H}^{n+1}(A^{\bullet}) \xrightarrow{\alpha} \cdots$$