Derived Category: Homework Set 3

Problem A

Let \mathcal{A} be an abelian category. This exercise shows that, in general, there is no canonical delta-functor from \mathcal{A} into $K(\mathcal{A})$.

Let

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0 \tag{1}$$

be a short exact sequence in \mathcal{A} . Show that the only arrow $C \longrightarrow A[1]$ in $K(\mathcal{A})$ is the zero arrow. Assume that

$$A \longrightarrow B \longrightarrow C \xrightarrow{0} A[1]$$

is a distinguished triangle in $K(\mathcal{A})$. Show that the sequence (1) splits.

Problem B

Let \mathcal{A} and \mathcal{B} be two abelian categories and let $F : \mathcal{A} \longrightarrow \mathcal{B}$ be a left-exact additive functor. Let \mathfrak{A} be a class of objects in \mathcal{A} satisfying the following conditions.

- (i) \mathfrak{A} is closed under finite direct sums and if $0 \longrightarrow I \longrightarrow J \longrightarrow N \longrightarrow 0$ in \mathcal{A} and both I and J are in \mathfrak{A} , then N is also in \mathfrak{A} .
- (ii) If $0 \longrightarrow I \longrightarrow A \longrightarrow B \longrightarrow 0$ is an exact sequence in \mathcal{A} with $I \in \mathfrak{A}$, then $0 \longrightarrow F(I) \longrightarrow F(A) \longrightarrow F(B) \longrightarrow 0$ is an exact sequence in \mathcal{B} .

Let I^{\bullet} (resp. J^{\bullet}) be a complex which is bounded below and $I^n \in \mathfrak{A}$ (resp. $J^n \in \mathfrak{A}$) for all all non-zero I^n (resp. J^n). Let $q : I^{\bullet} \to J^{\bullet}$ be a quasi-isomorphism. Show that $F(q) : F(I^{\bullet}) \to F(J^{\bullet})$ is again a quasi-isomorphism.

Show that if we take \mathfrak{A} to be the class of injective objects then both coditions (i) and (ii) are satisfied.