Office: L237, QuSoft/CWI
Phone: +31 (0)20 592 4328
E-Mail: m.walter@uva.nl

I am an Assistant Professor at the University of Amsterdam (KdVI, ITFA, ILLC) and a Senior Researcher at QuSoft. My office is located at the Centrum Wiskunde & Informatica (CWI).

My research is in quantum information theory and its connections to mathematics, fundamental physics & computing. I am in part supported by an NWO Veni grant on Quantum bits in space and time. I am part of the NWA quantum/nano route and a member of the Geometry and Quantum Theory mathematical research cluster.

Motivated by quantum information, I also study mathematical problems in representation theory and invariant theory through the lens of classical and quantum computation.

Curriculum vitae: [pdf]

Group

  • Freek Witteveen: quantum information & field theory (PhD candidate)
  • Bas Dirkse: multiparty protocols for quantum networks (PhD candidate, joint with TU Delft)
  • Raja Damanik: optimal stabilizer testing (MSc project)
  • Casper Guyrik (MSc project, joint with Ronald de Wolf)
  • Philip Roeleveld: tensor scaling algorithms (BSc project)
  • Wouter Borg: entanglement in stabilizer tensor networks (BSc project)

The group meeting will resume in July.

I am currently recruiting PhD students and postdocs – please get in touch for further information (with a brief summary of research interests and CV)!

Publications and Preprints

See the arXiv (and also GitHub).

New article published in PRX: popular summary & article

Submission accepted at FOCS 2018: preprint

Teaching

In Spring 2019, Maris Ozols and I will offer a course on Quantum Information Theory in the MasterMath program. See here for more information. Guus Regts and I will also organize the Master Seminar in Algebra, Geometry and Mathematical Physics, see here.

See here for introductory lectures on quantum information, field theory, and gravity (with an emphasis on links between these fields).

In Spring 2018, I tought a course on Symmetry and Quantum Information. See here for all course material. I previously taught a similar course at Stanford University. Watch this lecture as a teaser. I also taught an abridged version of this course at IES in Cargese.

See here and here if you are looking for a Google Summer of Code project!

Quantum Software and Society

Selected Talks

  • “Quantum entanglement and space-time”, Groningen 2018 [html]
  • “Convexity, marginals, and moment polytopes”, IAS 2018 [pdf] [video]
  • “Introduction to Quantum Programming”, QuSoft 2018
  • “Quantum marginal problem, tensor scaling, and invariant theory”, NMC 2018 [pdf]
  • “Rigorous entanglement renormalization from wavelets”, KITP 2017, Caltech 2017, AEI 2018, Amsterdam 2018, GGI 2018 [pdf] [video] [pdf] [pdf] [pdf]
  • “Schur-Weyl Duality for the Clifford Group: Property testing, de Finetti representations, and a robust Hudson theorem”, QIP 2018, Boulder 2018 [pdf] [video] [pdf]
  • “When is a quantum state a stabilizer state?”, QuSoft 2017, QuTech 2018 [pdf]
  • “Bulk reconstruction, error correction, and recovery maps”, KITP 2017 [video]
  • “Tensor network models of holography”, DESY 2017
  • “When is a state a stabilizer state? Testing stabilizer states with six copies”, CWI 2017
  • “Tensors and Quantum Physics”, Auburn 2017 [video]
  • “Multiparty entanglement, random codes, and quantum gravity”, Coogee 2017 [pdf], “Multipartite entanglement in toy models of holography”, Simons Center for Geometry & Physics 2016 [pdf] [video]
  • “Entanglement in random tensor networks”, Georgia Tech 2016 [pdf]
  • “Holographic duality from random tensor networks”, MIT 2015, KITP 2016, Cologne 2016, IQC 2016 [pdf] [pdf] [video] [other]
  • “Moment polytopes & computational complexity”, Berkeley 2015 [pdf]
  • “The Holographic Entropy Cone”, ETHZ, Caltech, CRM 2015; QIP 2016 [pdf short] [video] [pdf long]
  • “Kronecker coefficients and complexity theory”, Dartmouth 2015, Rome 2016 [pdf]
  • “Topologically ordered models in higher dimensions”, QGQIT 2015 [pdf]
  • “Random Quantum Marginals”, IAS 2014 [video]
  • “A Heisenberg Limit for Quantum Region Estimation”, ISIT 2014 [pdf]
  • “The Quantum Marginal Problem”, DPG Spring Meeting 2014 [pdf]
  • “Entanglement Polytopes”, QIP 2013; QSIT Lunch Seminar [pdf] [video] [science] [pdf] [explorer]
  • “Quantum Entropies and Representation Theory”, IHES 2013 [pdf]
  • “Computing Multiplicities of Lie Group Representations”, FOCS 2012 [pdf] [video]
  • “Quantum State Tomography of 1000 Bosons”, SPS Meeting 2012 [pdf]
  • “Quantum Marginals and Classical Moments”, IMS 2013 [pdf]
  • “Eigenvalue Distributions of Reduced Density Matrices”, ICMP 2012 [pdf]

Software

Other