You do not have to hand in these exercises, they are for your practice only.

1. **Finite fields** \mathbb{F}_q: In class, we discussed $\mathbb{F}_q = \{0, 1, \ldots, q - 1\}$, where q is a prime and addition and multiplication is done modulo q.

 \mathbb{F}_2 is just a bit with addition modulo 2 (XOR) and the usual multiplication: $1 \oplus 1 = 0$, $1 \times 1 = 1$ etc. In mathematics, \mathbb{F}_q is called a finite ‘field’ with q elements.

 In \mathbb{F}_q, any nonzero number has a multiplicative inverse, i.e., if $x \neq 0$ is in \mathbb{F}_q then there exists a unique element y in \mathbb{F}_q such that $xy = yx = 1$ (all arithmetic is done modulo q). We usually write x^{-1} for this element y and call it the inverse of x. For example, $2^{-1} = 2$ in \mathbb{F}_3, since $2 \times 2 = 4 \pmod{3} = 1$.

 (a) Write down all nonzero elements of \mathbb{F}_7 and find their inverses.

 In class, we said that an element $\alpha \in \mathbb{F}_q$ is called a generator (or ‘primitive element’) if $\{\alpha, \alpha^2, \ldots, \alpha^{q-1}\}$ runs over all nonzero numbers in \mathbb{F}_q. Generators exist for any prime q.

 (b) Find all generators of \mathbb{F}_7.

 Remark: The restriction to prime numbers is important. Otherwise, inverses and generators do not necessarily exist.

2. **Dividing polynomials**: Just like we can divide integers by each other when we are happy with leaving a remainder, we can divide any two polynomials with remainder. That is, given two polynomials A and B, where $B \neq 0$, there are unique polynomials Q and R such that

 $$A = QB + R,$$

 and the degree of R is less than the degree of B. We will call Q the quotient and R the remainder, and write $R = A \mod B$. You can compute Q and R in completely the same way how you do ‘long division’ between integers to figure out their quotient and remainder:

   ```
   Q <- 0
   R <- A
   while R and degree(R) >= degree(B):
       d <- degree(R) - degree(B)
       L <- leading_coeff(R) * leading_coeff(B)^{-1} * X^d
       Q <- Q + L
       R <- R - L * B
   ```

 Here, the leading coefficient of a polynomial $P = p_0 + p_1 X + \cdots + p_d X^d$ of degree d is p_d. That is, we start with A and repeatedly subtract a suitable multiple of B such that the degree decreases. This algorithm works not only for polynomials whose coefficients are real numbers, but also when the coefficients are in \mathbb{F}_q.

 (a) Compute the quotient and remainder for the following polynomials with coefficients in \mathbb{F}_3: $A = X^3 + 1$ and $B = 2X$.

 1
(b) Compute the quotient and remainder for the following polynomials with coefficients in \(\mathbb{F}_5 \): \(A = X^3 + 2X \) and \(B = X + 4 \).

3. **Reed-Solomon encoding:** Consider the Reed-Solomon code with parameters \(q = 7, N = 4, K = 2, \) and \(\alpha = 3 \).

 (a) Compute the generator polynomial \(G \).

 (b) Write down the codeword \([x_1, x_2, x_3, x_4]\) for a general message \([s_1, s_2]\) ∈ \(\mathbb{F}_7^2 \).

4. **Decoding erasure errors:** Imagine that a codeword \(x^N \) for a Reed-Solomon code is corrupted by \(C \) many erasure errors. That is, \(y^N \) differs from \(x^N \) at \(C \) locations and you know what these locations are. If \(C \leq T = N - K \), how can you decode the codeword? If this seems hard do not despair – we will discuss this on Thursday in class!

 Hint: Think of \(x^N \) and \(y^N \) as coefficients of polynomials \(M \) and \(R \). Then decoding is equivalent to figuring out the error polynomial \(E = R - M \), which has \(C \) unknown coefficients. Observe that \(E(\alpha) = R(\alpha), \ldots, E(\alpha^T) = R(\alpha^T) \). *Why does this help?*