In lossy compression, we fix the number of bits but allow small error probability:

\[
X' \xrightarrow{G} Y \xrightarrow{D} X''
\]

\[\text{Compressor, encoder} \quad \xrightarrow{0.15} \quad \text{decompressor, decoder} \quad \xrightarrow{X'}\]

\[\text{WANT: } \Pr(X \neq X') \leq \delta\]

How to achieve?

* Take set \(S \subseteq \Omega \) with \(\Pr(X \notin S) < \delta \).

* Then we can compress into \(e = \lceil \log \#S \rceil \) bits
 with error probability \(\leq \delta \). How?

Simply define \(G \) by sending all \(x \in S \) to distinct bitstrings. (For \(x \notin S \), pick arbitrary, or fail.)

Define \(\delta \)-essential bit consent by

\[
H_\delta(X') = H_\delta(P) = \min \left\{ \log \#S \mid \Pr(X \notin S) \leq \delta \right\}
\]

\[\Rightarrow H_\delta(X') \leq \text{is minimal \# bits required to compress } X' \text{ with error } \leq \delta\]

\(H_\delta(X') \) is in general quite messy... Amazingly, it simplifies dramatically if we compress blocks of symbols.

Shannon's Source Coding Theorem

\[
\lim_{N \to \infty} \frac{H_\delta(X_1, \ldots, X_N)}{N} = H(P)
\]

11D (memoryless) information source

Optimal compression rate for block size \(N \) and error prob \(\leq \delta \)

\[\text{optimal asymptotic compression rate } \delta \text{ independent of } \delta\]

(i.e. \(\forall \varepsilon(\delta), \exists \delta \in N_\varepsilon(0) \): \(\left| \frac{H_\delta(X_1, \ldots, X_N)}{N} - H(P) \right| < \varepsilon \))
If $R > H(CP)$, then $\exists N_0$ s.t. $H(CP) > 0$, strings of bit length $N > N_0$ can compress at rate R.

If $R < H(CP)$, then $\exists N_0$ s.t. $H(CP) > -\log_2 N$, strings of bit length $N > N_0$ cannot compress at rate R.

Proof of the Source Coding Theorem

Notation: $X_N = x_1, \ldots, x_N$ for strings of length N.

Typical set:

$$T_{N,\varepsilon}(CP) = \left\{ \frac{1}{N} \log \frac{1}{P(x_N)} - H(CP) \right\} \leq \varepsilon \right\}$$

$$\frac{1}{N} \sum_{k=1}^{N} \log \frac{1}{P(x_k)} - H(CP) \leq \varepsilon$$

Properties:

1. $2^{-N(H(CP) + \varepsilon)} \leq P(X_N) \leq 2^{-N(H(CP) - \varepsilon)}$ (by definition)

2. $\#T_{N,\varepsilon} \leq 2^{-N(H(CP)+\varepsilon)}$

$$P_t \geq \Pr(X^N \in T_{N,\varepsilon}) = \sum_{X^N \in T_{N,\varepsilon}} P(X^N) \geq \#T_{N,\varepsilon} \cdot 2^{-N(H(CP)+\varepsilon)}$$

3. $\Pr(X^N \notin T_{N,\varepsilon}) \leq \frac{\sigma^2}{N \varepsilon^2} \rightarrow 0$, where $\sigma^2 = \text{Var} \left(\frac{1}{P(x_N)} \right)$.

$$L_t = \log \frac{1}{P(x_N)}$$

$$\Pr \left(\left| \frac{1}{N} \sum_{k=1}^{N} L_t - \mu \right| > \varepsilon \right) \leq \frac{\text{Var}(L_t)}{N \varepsilon^2} \leq \frac{\sigma^2}{N \varepsilon^2} \rightarrow 0.$$

"Asymptotic Equipartition Property" (AEP)

"For large N, typical probabilities are $2^{-N(H(CP) \pm \varepsilon)}$.

Proof of the theorem: Let $S \subseteq (0,1)$ and $\varepsilon > 0$ be arbitrary.

1. $\Pr(X^N \in T_{N,\varepsilon}) \geq 1 - \frac{\sigma^2}{N \varepsilon^2} \geq 1 - \delta$ if N large enough

2. $\frac{H_S(X^N)}{N} \leq \log \#T_{N,\varepsilon} \leq H(CP) + \varepsilon$ for large N. [1]
Want to prove that \(\frac{H_S(X^N)}{N} \geq H(P) - \varepsilon \) for \(N \) large.

\[
\text{If not: } \exists \text{ sets } S_N \text{ for } N \to \infty \text{ s.t.} \\
\Pr(X^N \in S_N) \geq 1 - \varepsilon \text{ and } |S_N| < 2^{N(H(P) - \varepsilon)}.
\]
\[
\implies 1 - \varepsilon \leq \Pr(X^N \in S_N) = \Pr(X^N \in S_N \cap T_{N, \varepsilon/2}) + \Pr(X^N \in S_N \setminus T_{N, \varepsilon/2})
\]
\[
\leq \Pr(X^N \in S_N \cap T_{N, \varepsilon/2}) + \Pr(X^N \not\in T_{N, \varepsilon/2}) \to 0 \\
\leq |S_N| \cdot 2^{-N(H(P) - \varepsilon)} \to 0 \text{ by } 2
\]
\[
\leq 2^{-N^2} \to 0
\]

Remark: \(T_{N, \varepsilon} \) is usually NOT the smallest set \(S_N \) with \(\Pr(X^N \in S_N) \geq 1 - \varepsilon \)

... but small enough and easy to handle as \(N \to \infty \)!

How to use this in practice?

SCENARIO: Want to compress IID (memoryless) data source \(P \)

(we know \(P \), but not which string will be emitted)

FIX:
- block size \(N \)
- parameter \(\varepsilon > 0 \)
- a way to order the typical set \(T_{N, \varepsilon} \)

COMPRESSOR: Input: A string \(X^N = x_1 \ldots x_N \)

* If \(x_N \not\in T_{N, \varepsilon} \): FAIL
* Determine index \(p \) of \(x_N \) in \(T_{N, \varepsilon} \)
* Return \(p \) in binary.

This is a lossy compression protocol:

* Error probability: \(\Pr(X^N \not\in T_{N, \varepsilon}) \leq \frac{\varepsilon^2}{2N^2} \to 0 \) as \(N \to \infty \)

* **Rate** \(R = \frac{\# \text{bits required to represent } p}{N} \)

\[
\leq \frac{\log |T_{N, \varepsilon}| + 1}{N} \leq (H(P) + \varepsilon) + \frac{1}{N} \to 0
\]

DECOMPRESSOR:

Input: A binary string \(S \)

* Interpret \(S \) as integer \(p \)
* Return \(p \)-th element of \(T_{N, \varepsilon} \)

AEP
Variations

A. How to make it **LOSSLESS**?

When $X \in T_{\text{MIE}}$, send uncompressed
using $N \cdot \log \#A \times 7$ bits.

$$\bar{R} \leq \frac{1}{N} + \Pr(X \in T_{\text{MIE}}) \left(H(C) + \epsilon + \frac{1}{2} \right)$$

$$+ \Pr(X \notin T_{\text{MIE}}) \cdot \log \#A \times 7$$

$$\approx H(C) + \epsilon \text{ for large } N$$

B. How to also make it **UNIVERSAL**? (IID, but we do **NOT** know P)

For simplicity: assume $A = \{0, 1\}$, i.e., data source of bits.

FIX: * block size N

* a way to order the sets

$B(N, k) := \{x^N \text{ with } k \text{ ones and } N-k \text{ zeros}\}$

COMPRESSOR: Input: A bit string $x^N = x_1 \ldots x_N$

* Compute $k := \#$ ones in x^N

* Determine index p of x^k in $B(N, k)$

* Return k and p in binary.

Average rate $\bar{R} \approx H(C) + \epsilon$ Assume that $X_1, \ldots, X_N \overset{\text{iid}}{\sim} P$. Then:

$x^N \in T_{\text{MIE}} \implies B(N, k) \in T_{\text{MIE}} \implies \#B(N, k) \leq \#T_{\text{MIE}}$.

DECOMPRESSOR: Clear! ?

* Key idea: $B(N, k)$ can be much smaller than $\{0, 1\}^N$.

Just used in protocol only in the analysis!!

Typically only depends on $\#$ zeros and ones in x^N!
Thus we can argue as above:

\[R = \frac{\log(N)}{N} + \frac{\log \#(\text{nic})}{N} \]

\(\leq \Pr(X \not\in \text{Tue}) \cdot \frac{\log \#(\text{Tue})}{N} + \Pr(X \in \text{Tue}) \cdot \frac{\log 2N}{N} \to 0 \) as before

\(\approx H(p) + \varepsilon \) for large \(N \).

HW: Program this protocol & compress the donkey!

Discussion: Many disadvantages!

* Have to look at entire \(x^N \) to compress. Can we compress by looking at a few symbols at a time?

* Assume IID distribution... what if \(P \) changes? Or if we have local correlations?

To Thursday ☝️