Converse of the Noisy Coding Theorem (NOT in Mackay)

"If \(\tilde{R} > C(\Omega) \): \(\exists \delta > 0 \) \(\forall N, N \geq N_0 \): \# code with \(\frac{K}{N} \geq \tilde{R} \) \& \(P_B \leq \delta \)

Tools: ① Data Processing Inequality (DPI) for \(A \to B \to C \) Markov chain:
\[
I(B: C) \geq I(A: C) \quad \& \quad H(A|B) \leq H(A|C)
\]
② If \(X^N \) arbitrary and \(Y^N \) channel output:
\[
I(X^N: Y^N) = \sum_{i=1}^{N} I(X_i; Y_i) \leq N \cdot C(\Omega)
\]
③ Fano's inequality for \(S \to T \to \hat{S} \) Markov chain, \(p = \Pr(C(S \neq \hat{S})) \)
\[
H(\hat{S}|p, 1-p) + p \cdot \log \#AS \geq H(C(S | \hat{S})) \geq H(S|T)
\]

Proof of the converse: Consider \((N, K)\)-code with \(\frac{K}{N} \geq \tilde{R} > C(\Omega) \).

Let \(S \in \{1, \ldots, 2^K\} \) uniform. Recall: \(S \rightarrow X^N \rightarrow Y^N \rightarrow \hat{S} \).

Then:
* \(H(S|Y^N) = H(S) - I(S; Y^N) \geq H(S) - I(X^N; Y^N) \geq K - N \cdot C(\Omega) \)

By DPI ①
\(S \rightarrow X^N \rightarrow Y^N \) Markov chain

* \(H(S|Y^N) \leq 1 + \Pr(C(S \neq \hat{S})) \cdot \log \#AS = 1 + P_B \cdot K \)

By Fano's inequality ②
\(S \rightarrow Y^N \rightarrow \hat{S} \) Markov chain

\[K - N \cdot C(\Omega) \leq 1 + P_B \cdot K \]
\[\Rightarrow P_B \geq \frac{1}{K} (K - N \cdot C(\Omega) - 1) = 1 - \frac{N \cdot C(\Omega)}{K} - \frac{1}{K} \geq 1 - \frac{C(\Omega)}{N} - \frac{1}{N} \]

Can never go below this for large enough \(N \)

Are we happy? What questions does Shannon's theorem leave unaddressed? Algorithmics, large \(N \), ... how to even compute \(C(\Omega) \)?
Shannon’s Theorem vs. Practice

Need large block size \(N \) for joint typicality vs. fixed packet size

Codebook \(X^N (U_1) \ldots X^N (2^K) \) exponentially large in \(N \) (if \(R > 0 \))

Random codes vs. predictable performance

A family of codes is "very good" if \(\frac{K}{N} \to 0 \) & \(p_c \to 0 \)

"good" if \(\frac{K}{N} \geq R \) & \(p_c \to 0 \) for some \(\tilde{R} > 0 \)

"bad" otherwise

...and "practical" if efficient encoder + decoder

In practice:

* most codes are linear (\(x^N \) linear function of \(S^K \))

* "easy" to come up with "plausible" encoders — but optimal decoding is in general (NP) hard! — unlike for compression!

\[
\sigma_{\text{opt}} (y^N) = \arg\max_S P(S|y^N)
\]

Why? If \(P(s) \) arbitrary, want to choose \(\sigma \) to maximize \(P(s|y^N) \)

\[
= \sum \frac{P(s|o(y^N), t^N = y^N)}{y^N} \]

Choose \(s = o(y^N) \) that maximizes \(P(s|y^N) \)

For erasure channel:

\(S_1 \oplus S_2 \oplus S_3 \oplus t_1 = 0 \)
\(S_2 \oplus \ldots \oplus S_{K-2} \oplus t_2 = 0 \)

... & \(\frac{4}{3} \) bits per parity constraint, each bit in 3 parity constraints

* types of decoders: "algebraic" vs. "iterative"

Types of codes:

* block codes: e.g. Hamming, Reed-Solomon, LDPC codes, WiFi, DVB, ..

* convolutional: e.g. turbo codes

\(36/46/\text{LTE} \), \(\text{Sat comm.} \)

\(\text{linear streaming codes} \)