Last time: Pure state estimation via $\text{Sym}^n(C^d)$.

\[\Pi_n = \left(d+n-1 \right) \int d\gamma \quad \omega \otimes \omega =: \Pi_n \]

- Orthogonal proj. onto Sym. subspace
- Dimension of Sym. subspace
- prob. measure on pure states
 \(\{ \gamma \sim |\gamma \rangle \langle \gamma | \}, \text{ inv. under } \gamma \mapsto (U|\gamma \rangle \langle \gamma | U^\dagger = |U|\gamma \rangle \langle \gamma | U^\dagger \)

\[\omega \otimes \Pi_n (U^\dagger) =: \Pi_n \]

Today: Will prove this formula using representation theory.
(Alternative: Calculate the integral by hand.)

Literature: Part I in Serre → Course homepage

Group G: Set with multiplication ("\$\cdot\$"), neutral element ("1"), inverses ("g^{-1}")

- $g,h \in G \implies g \cdot h \in G$
- $g \cdot 1 = 1 \cdot g = g$
- $g \cdot g^{-1} = g^{-1} \cdot g = 1$

Often omit "\cdot"!

Examples:

* Symmetric group $S_n := \{ \pi : \{1, \ldots, n\} \to \{1, \ldots, n\} \ |	ext{permutation} \}$
 - $\circ = \text{composition}$:
 \[(\pi \circ \tau)(x) := \pi(\tau(x)) \]
 - $1 = \text{id}$ (identity map), $\tau^{-1} = \text{inverse function}$
* Unitary group \(U(d) \) := \{ U \text{ unitary } d \times d \text{ matrix} \}
 - \text{ matrix multiplication, } I = I = \text{identity matrix, } U^{-1} = U^t

* Special unitary group \(SU(d) \) := \{ U \text{ unitary } | \det(U) = 1 \}
 - \text{ subgroup of } U(d)

Other groups? \(D_8, \mathbb{Z}/n\mathbb{Z}, GL(d) \& SL(d) \); ...

Introduction to Representation Theory

Unitary representation of group \(G \):

* Hilbert space \(H \)

* Unitary operators \(\{ R_g : g \in G \} \) on \(H \) s.t.

\[
R_{gh} = R_g \cdot R_h \quad \& \quad R_i = I_H
\]

\(\text{NB: Always } \dim < \infty. \text{ Will say } \text{“the representation } H \text{”} \)

Examples:

* \((C^d)^{\otimes n} \) is rep. of \(S_n \text{ and of } U(d) \)

\[
R_{\pi} (14_i \otimes \cdots \otimes 14_n) = 14_{\pi^{-1}(i)} \otimes \cdots \otimes 14_{\pi^{-1}(n)}
\]

\(T_U = U^{\otimes n} = U \otimes \cdots \otimes U \)

\[
[R_{\pi}, T_U] = 0
\]

\(\text{...So we can think of } \text{rep. of } S_n \times U(d) \)
* Representations of S_3: \[\{\text{id}, 1 \mapsto 2, 1 \mapsto 3, 2 \mapsto 3, 1 \mapsto 2, 3 \mapsto 2 \mapsto 1\} \]

- **Trivial repr:** Exists for any group.
 \[H = \mathbb{C}|0\rangle \quad R_{\pi}|0\rangle = |0\rangle \quad \forall \pi \]

- **Sign repr:**
 \[H = \mathbb{C}|0\rangle \quad R_{\pi}|0\rangle = |0\rangle \quad \text{Sign}(\pi) \quad \text{for swaps } 1 \leftrightarrow 2 \text{ etc.} \]

- \[H = \mathbb{C}^3 = \{\alpha|0\rangle + \beta|1\rangle + \gamma|2\rangle\} \]
 \[R_{\pi} \text{ permutes coords, e.g. } R_{1 \leftrightarrow 2}\]

 \[\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \rightarrow \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix} \]

To understand a representation, want to decompose it into its smallest building blocks...

Invariant subspace ("subrepresentation"): \(\tilde{H} \subseteq H \text{ s.th. } \forall \phi \in \tilde{H}, R_g\phi \in \tilde{H} \) for all \(g \) in the group.

* \(H \) is called **irreducible** ("irrep") if \(\tilde{H} \) is trivial & \(H \) has only invariant subspaces

* If \(\tilde{H} \) is irrep. subspace so is \(\tilde{H}^+ \).

\[H = \tilde{H} \oplus \tilde{H}^+ \]

\[R_g = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \quad \text{"Smaller" representations} \]
If \(\tilde{H} \neq \{0\} \), then:

- "finest" decomposition: \(H = H_1 \oplus \ldots \oplus H_m \)
- Orthogonal & Irreducible

RT tells us how to decompose & what the reps are!

Example:

* Any 1-dim. repr. is an irrep.
* \(\otimes \) is not an irrep of \(S_3 \), because

\[
\tilde{H} = \{ \alpha |0\rangle + \beta |1\rangle + \gamma |2\rangle \mid \alpha + \beta + \gamma = 0 \} \subseteq \mathbb{C}^3
\]

is inv. subspace. \(\tilde{H} \) is irreducible. \(\rightarrow \) PSET

\(\tilde{H}^\perp = \mathbb{C} \langle |0\rangle + |1\rangle + |2\rangle \rangle \) is 1-dim

\(\rightarrow H = \tilde{H} \oplus \tilde{H}^\perp \) is decomposition into irreps

* Sym\(^3\)(\(\mathbb{C}^d \))?

For \(S_n \), invariant but not irreducible.

For \(U(d) \), invariant and **IRREDUCIBLE**!

\[R_{\pi}(\Phi) = \langle \Phi | \rightarrow R_{\pi}(Tu(\Phi)) = Tu(R_{\pi}(\Phi)) = Tu(\Phi) \]

Proof below for \(d = 2 \).
Interlude: \(J : H \rightarrow H' \) s.t. \(JRg = R'gJ \) (4g)

If \(J \) is unitary: \(H, H' \) are called (unitarily) equivalent

\[
JRgJ^+ = R'g
\]

base change

"\(H \cong H' \)"

Schur's Lemma: Let \(J : H \rightarrow H' \) intertwiner.

1. If \(H, H' \) irreps: \(J \) invertible or \(J = 0 \).
2. If \(H = H' \) same irrep: \(J \cong \mathbb{I}_H \)

Proof: 1. \(\ker(J) \& \text{ran}(J) \) are inv. subspaces

2. Let \(\lambda \) be an eigenvalue. Then \(\ker((\lambda - J)) \neq 0 \), so \(\ker((\lambda - J)) = H \), so \(J = \lambda \mathbb{I}_H \).

Why do we care?!!

Consequence: \(\Pi_n = \Pi_n^i := (\mathbb{I} + d^{-1}) \int dt \ker e^{t \lambda} \mathbb{I} \)

Sketch: W.r.t. \((C^d)^\otimes n = H \oplus H^\perp; H := \text{Sym}^n(C^d) \)

\[
\Pi_n = \begin{pmatrix} \mathbb{I} & 0 \\ 0 & 0 \end{pmatrix}, \quad \Pi_n^i = \begin{pmatrix} J & 0 \\ 0 & 0 \end{pmatrix}, \quad \Sigma_\alpha = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}
\]

\[
\Sigma_\alpha \Pi_n (\Sigma_\alpha)^\dagger \Pi_n^i (\Sigma_\alpha)^\dagger = \Pi_n^i \rightarrow J \text{ is intertwiner on irrep}
Schur's lemma

\[J \alpha I \Rightarrow \Pi_n \cong \Pi_n \]

To see that \(\cong \), compare trace.

Next time: More details on this + proof that \(\text{Sym}^n(\mathbb{C}^2) \) is irreducible.