Quantum Information Theory, Spring 2019

Problem Set 2

- 1. (4 points) Nayak's bound: Alice wants to communicate m bits to Bob by sending n qubits. She chooses one state $\rho_x \in D(\mathcal{X}), \mathcal{X} = (\mathbb{C}^2)^{\otimes n}$, for each possible message $x \in \{0, 1\}^m$ that she may want to send, and Bob chooses a measurement $\mu \colon \{0, 1\}^m \to \operatorname{Pos}(\mathcal{X})$ that he will use to decode the message.
 - (a) Write down a formula for the probability that Bob successfully decodes the message if the message is drawn according to an arbitrary probability distribution p(x) on $\{0,1\}^m$.
 - (b) Show that the probability that Bob successfully decodes the bitstring is at most 2^{n-m} if the message is drawn uniformly at random.
- 2. (4 points) Extensions of pure states: Let X, Y, Z be arbitrary quantum systems with Hilbert spaces $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$, respectively.
 - (a) Show that $\operatorname{tr}_{Z}[A \otimes N] = A \otimes \operatorname{tr}_{Z}[N]$ for all $A \in L(\mathcal{X})$ and $N \in L(\mathcal{Y} \otimes \mathcal{Z})$.
 - (b) Show that $\rho = \rho_X \otimes \rho_Y$ for every state $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ such that ρ_X is pure.
 - (c) Show that $\rho_{XZ} = \rho_X \otimes \rho_Z$ for every state $\rho \in D(\mathcal{X} \otimes \mathcal{Y} \otimes \mathcal{Z})$ such that ρ_{XY} is pure.
 - (d) Show that $\rho = \rho_X \otimes \rho_Y \otimes \rho_Z$ for every $\rho \in D(\mathcal{X} \otimes \mathcal{Y} \otimes \mathcal{Z})$ such that ρ_{XY} and ρ_{XZ} are pure.

Hint: In class we proved (b) when ρ is pure. Can you use a purification to reduce to this case?

- 3. (4 points) **Properties of the fidelity:** Use Uhlmann's theorem to prove the following two properties of the fidelity. As before, X, Y denote arbitrary systems with Hilbert spaces \mathcal{X}, \mathcal{Y} .
 - (a) Monotonicity: $F(\rho, \sigma) \leq F(\rho_X, \sigma_X)$ for any two states $\rho, \sigma \in D(\mathcal{X} \otimes \mathcal{Y})$.
 - (b) Joint concavity: $F(\sum_{i \in I} p_i \rho_i, \sum_{i \in I} p_i \sigma_i) \ge \sum_{i \in I} p_i F(\rho_i, \sigma_i)$, where $(p_i)_{i \in I}$ is an arbitrary finite probability distribution and where $(\rho_i)_{i \in I}$, $(\sigma_i)_{i \in I}$ are families of states in $D(\mathcal{X})$.

Hint: Can you prove the inequalities by finding suitable purifications?

- 4. (4 points) **Practice:** The file pset2.txt contains the entries of a complex 2×2 -matrix A (row by row). The corresponding vector $|\Psi\rangle = \sum_{x,y} A_{x,y} |x\rangle \otimes |y\rangle \in \mathcal{X} \otimes \mathcal{Y}$, where $\mathcal{X} = \mathcal{Y} = \mathbb{C}^2$, has norm one and hence determines a pure two-qubit state $\rho = |\Psi\rangle \langle \Psi|$.
 - (a) Compute the Schmidt coefficients of $|\Psi\rangle$.
 - (b) Compute the reduced states ρ_X and ρ_Y .
 - (c) Compute the trace distance $\|\rho_X \rho_Y\|_1$.
 - (d) Compute the fidelity $F(\rho_X, \rho_Y)$.

Hint: On the course homepage you can find instructions for loading the complex matrix.

Notation: In Problems 2–4, just like in class, ρ_X refers to the reduced state of ρ obtained by taking the partial trace over all systems other than X (and likewise for ρ_Y etc.).