1. Majorization examples:
 (a) Let \(p = (0.1, 0.7, 0.2) \) and \(q = (0.3, 0.2, 0.5) \). Determine whether \(p \prec q \) or \(q \prec p \).
 (b) Find a sequence of Robin Hood transfers that converts one distribution into the other.
 (c) Express this sequence as a single stochastic matrix and verify that this matrix is in fact doubly stochastic.
 (d) Express this matrix as a convex combination of permutations.
 (e) Find a pair of probability distributions \(p \) and \(q \) such that neither \(p \prec q \) nor \(q \prec p \).

2. Alternative definitions of majorization:
 Let \(u = (u_1, \ldots, u_n) \) be a vector and let \(r \) denote reverse sorting and \(s \) denote sorting:
 \[
 r_1(u) \⩾ r_2(u) \⩾ \cdots \⩾ r_n(u),
 \]
 \[
 s_1(u) \leq s_2(u) \leq \cdots \leq s_n(u),
 \]
 such that \(\{r_i(u) : i = 1, \ldots, n\} = \{s_i(u) : i = 1, \ldots, n\} = \{u_i : i = 1, \ldots, n\} \) as multisets.
 Let \(u \) and \(v \) be two probability distributions over \(\Sigma = \{1, \ldots, n\} \), i.e., \(u_i \geq 0, v_i \geq 0 \), and \(\sum_{i=1}^n u_i = \sum_{i=1}^n v_i = 1 \). Show that the following ways of expressing \(v \prec u \) are equivalent:
 (a) \(\sum_{i=1}^m r_i(v) \leq \sum_{i=1}^m r_i(u) \), for all \(m \in \{1, \ldots, n-1\} \).
 (b) \(\sum_{i=1}^m s_i(v) \geq \sum_{i=1}^m s_i(u) \), for all \(m \in \{1, \ldots, n-1\} \).
 (c) \(\forall t \in \mathbb{R} : \sum_{i=1}^n \max(v_i - t, 0) \leq \sum_{i=1}^n \max(u_i - t, 0) \).

3. Vectorization and partial trace:
 (a) Show that, for all \(L, R \in L(\mathcal{H}_A, \mathcal{H}_B) \),
 \[
 \text{Tr}_A[|L\rangle\langle R|] = LR^\dagger.
 \]
 (b) Let \(\Xi \in \text{SepC}(A : B) \) be given by
 \[
 \Xi(M) = \sum_{a \in \Sigma} (A_a \otimes B_a)M(A_a \otimes B_a)^\dagger,
 \]
 for all \(M \in L(\mathcal{H}_A \otimes \mathcal{H}_B) \). Show that, for all \(X \in L(\mathcal{H}_A, \mathcal{H}_B) \),
 \[
 \text{Tr}_A\left[\Xi(|X\rangle\langle X|)\right] = \sum_{a \in \Sigma} B_aX_A^\dagger A_aX^\dagger B_a^\dagger.
 \]