Analytic algorithms for the moment polytope

Cole Franks
Rutgers University
Based on joint work with

Peter Bürgisser Ankit Garg Rafael Oliveira

Michael Walter Avi Wigderson

Mainly from “Towards a theory of non-commutative optimization: geodesic 1st and 2nd order methods for moment maps and polytopes”
FOCS 2019
1. Moment polytopes by example
2. Algorithms for the general problem
Moment polytopes
Motivating question

<table>
<thead>
<tr>
<th>Horn’s problem:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}^n$ the spectra of three $n \times n$ matrices H_1, H_2, H_3 such that $H_1 + H_2 = H_3$?</td>
</tr>
</tbody>
</table>

If so, can one find the matrices efficiently?
Motivating question

Horn's problem:
Are $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}^n$ the spectra of three $n \times n$ matrices H_1, H_2, H_3 such that

$$H_1 + H_2 = H_3?$$

If so, can one find the matrices efficiently?
Let $\mathcal{V} = \mathbb{P}(\text{Mat}(n)^2)$, define

$$\mu : \mathcal{V} \rightarrow \text{Herm}(n)^3$$

by

$$\mu : [A_1, A_2] \mapsto \frac{(A_1 A_1^\dagger, A_2 A_2^\dagger, A_1^\dagger A_1 + A_2^\dagger A_2)}{\|A_1\|^2 + \|A_2\|^2}.$$

Note $\text{eigs}(AA^\dagger) = \text{eigs}(A^\dagger A)$, so

$$\text{eigs}(A_1 A_1^\dagger), \text{ eigs}(A_2 A_2^\dagger), \text{ eigs}(A_1^\dagger A_1 + A_2^\dagger A_2)$$

is a “yes” instance to Horn’s problem (in fact, all such instances take this form).
Let $\mathcal{V} = \mathbb{P}(\text{Mat}(n)^2)$, define

$$\mu : \mathcal{V} \to \text{Herm}(n)^3$$

by

$$\mu : [A_1, A_2] \mapsto \left(\frac{A_1 A_1^\dagger}{\|A_1\|^2}, \frac{A_2 A_2^\dagger}{\|A_2\|^2}, \frac{A_1^\dagger A_1 + A_2^\dagger A_2}{\|A_1\|^2 + \|A_2\|^2} \right).$$

Note $\text{eigs}(AA^\dagger) = \text{eigs}(A^\dagger A)$, so

$$\text{eigs}(A_1 A_1^\dagger), \quad \text{eigs}(A_2 A_2^\dagger), \quad \text{eigs}(A_1^\dagger A_1 + A_2^\dagger A_2)$$

is a “yes” instance to Horn’s problem (in fact, all such instances take this form).
Moment polytopes

- $G = \text{GL}(n)$
- $\pi : G \to \mathbb{C}^m$ a representation of G where $U(n)$ acts unitarily
- $\mathcal{V} \subset \mathbb{P}(\mathbb{C}^m)$ a projective variety fixed by G

Moment map is the map $\mu : \mathcal{V} \to n \times n \text{ Hermitians} =: \text{Herm}(n)$ given by

$$\mu : \mathcal{V} \mapsto \nabla_{H \in \text{Herm}(n)} \log \| e^H \cdot \mathcal{V} \|$$

$i\mu$ is a moment map for $U(n)$ in the physical sense! In particular:

Theorem (Kirwan)

Image of

$$\mathcal{V} \xrightarrow{\mu} \text{Herm}(n) \xrightarrow{\text{take eigs.}} \mathbb{R}^n$$

is a convex polytope in \mathbb{R}^n known as moment polytope, denoted $\Delta(\mathcal{V})$
Moment polytopes

- \(G = \text{GL}(n) \)
- \(\pi : G \to \mathbb{C}^m \) a representation of \(G \) where \(U(n) \) acts unitarily
- \(\mathcal{V} \subset \mathbb{P}(\mathbb{C}^m) \) a projective variety fixed by \(G \),

Moment map is the map \(\mu : \mathcal{V} \to n \times n \) Hermitians \(=: \text{Herm}(n) \) given by

\[
\mu : \mathcal{V} \mapsto \nabla_{H \in \text{Herm}(n)} \log \| e^H \cdot v \|
\]

\(i\mu \) is a moment map for \(U(n) \) in the physical sense! In particular:

Theorem (Kirwan)

Image of

\[
\mathcal{V} \xrightarrow{\mu} \text{Herm}(n) \xrightarrow{\text{take eigs.}} \mathbb{R}^n
\]

is a convex polytope in \(\mathbb{R}^n \) known as moment polytope, denoted \(\Delta(\mathcal{V}) \).
Moment polytopes

- $G = \text{GL}(n)$
- $\pi : G \to \mathbb{C}^m$ a representation of G where $U(n)$ acts unitarily
- $\mathcal{V} \subset \mathbb{P}(\mathbb{C}^m)$ a projective variety fixed by G,

Moment map is the map $\mu : \mathcal{V} \to n \times n$ Hermitians $=: \text{Herm}(n)$ given by

$$\mu : \mathcal{V} \ni v \mapsto \nabla_{H \in \text{Herm}(n)} \log \| e^H \cdot v \|$$

$i\mu$ is a moment map for $U(n)$ in the physical sense! In particular:

Theorem (Kirwan)

Image of

$$\mathcal{V} \xrightarrow{\mu} \text{Herm}(n) \xrightarrow{\text{take eigs.}} \mathbb{R}^n$$

is a convex polytope in \mathbb{R}^n known as moment polytope, denoted $\Delta(\mathcal{V})$
Moment polytopes

- \(G = \text{GL}(n) \)
- \(\pi : G \to \mathbb{C}^m \) a representation of \(G \) where \(U(n) \) acts unitarily
- \(\mathcal{V} \subset \mathbb{P}(\mathbb{C}^m) \) a projective variety fixed by \(G \),

Moment map is the map \(\mu : \mathcal{V} \to n \times n \) Hermitians \(=: \text{Herm}(n) \) given by

\[
\mu : v \mapsto \nabla_{H \in \text{Herm}(n)} \log \| e^H \cdot v \|
\]

\(i\mu \) is a moment map for \(U(n) \) in the physical sense! In particular:

Theorem (Kirwan)

Image of

\[
\begin{array}{ccc}
\mathcal{V} & \xrightarrow{\mu} & \text{Herm}(n) & \xrightarrow{\text{take eigs.}} & \mathbb{R}^n \\
\end{array}
\]

is a convex polytope in \(\mathbb{R}^n \) known as **moment polytope**, denoted \(\Delta(\mathcal{V}) \)
Horn polytope

- $\mathcal{V} = \mathbb{P}({\text{Mat}}(n)^2)$
- $G = \text{GL}(n)^3$
- π given by

$$ (g_1, g_2, g_3) \cdot (A_1, A_2) = (g_1 A_1 g_3^\dagger, g_2 A_2 g_3^\dagger). $$

- $\mu : \mathcal{V} \to \text{Herm}(n)^3$ given by

$$ \mu : [A_1, A_2] \mapsto \frac{(A_1 A_1^\dagger, A_2 A_2^\dagger, A_1^\dagger A_1 + A_2^\dagger A_2)}{\|A_1\|^2 + \|A_2\|^2}. $$

Thus, image of

$$ \mathcal{V} \xrightarrow{\mu} \text{Herm}(n)^3 \xrightarrow{\text{take eigs.}} (\mathbb{R}^n)^3 $$

is the* solution set of the Horn problem!
Horn polytope

- $\mathcal{V} = \mathbb{P}(\text{Mat}(n)^2)$
- $G = \text{GL}(n)^3$
- π given by
 $$(g_1, g_2, g_3) \cdot (A_1, A_2) = (g_1 A_1 g_3^\dagger, g_2 A_2 g_3^\dagger).$$

- $\mu : \mathcal{V} \rightarrow \text{Herm}(n)^3$ given by
 $\mu : [A_1, A_2] \mapsto \frac{(A_1 A_1^\dagger, A_2 A_2^\dagger, A_1^\dagger A_1 + A_2^\dagger A_2)}{\|A_1\|^2 + \|A_2\|^2}.$

Thus, image of

- $\mathcal{V} \xrightarrow{\mu} \text{Herm}(n)^3 \xrightarrow{\text{take eigs.}} (\mathbb{R}^n)^3$

is the* solution set of the Horn problem!
Horn polytope

- \(\mathcal{V} = \mathbb{P}(\text{Mat}(n)^2) \)
- \(G = \text{GL}(n)^3 \)
- \(\pi \) given by
 \[
 (g_1, g_2, g_3) \cdot (A_1, A_2) = (g_1A_1g_3^\dagger, g_2A_2g_3^\dagger).
 \]

- \(\mu : \mathcal{V} \to \text{Herm}(n)^3 \) given by
 \[
 \mu : [A_1, A_2] \mapsto \frac{(A_1A_1^\dagger, A_2A_2^\dagger, A_1^\dagger A_1 + A_2^\dagger A_2)}{\|A_1\|^2 + \|A_2\|^2}.
 \]

Thus, image of

\[
\begin{align*}
\mathcal{V} \xrightarrow{\mu} \text{Herm}(n)^3 & \xrightarrow{\text{take eigs.}} (\mathbb{R}^n)^3
\end{align*}
\]

is the* solution set of the Horn problem!
Horn polytope

- $\mathcal{V} = \mathbb{P}(\text{Mat}(n)^2)$
- $G = \text{GL}(n)^3$
- π given by
 $$(g_1, g_2, g_3) \cdot (A_1, A_2) = (g_1 A_1 g_3^\dagger, g_2 A_2 g_3^\dagger).$$

- $\mu : \mathcal{V} \to \text{Herm}(n)^3$ given by
 $$\mu : [A_1, A_2] \mapsto \left(\frac{A_1 A_1^\dagger}{\|A_1\|^2 + \|A_2\|^2}, \frac{A_2 A_2^\dagger}{\|A_1\|^2 + \|A_2\|^2}, \frac{A_1^\dagger A_1 + A_2^\dagger A_2}{\|A_1\|^2 + \|A_2\|^2} \right).$$

Thus, image of

$$\mathcal{V} \xrightarrow{\mu} \text{Herm}(n)^3 \xrightarrow{\text{take eigs.}} (\mathbb{R}^n)^3$$

is the* solution set of the Horn problem!
Horn polytope

- $\mathcal{V} = \mathbb{P}(\text{Mat}(n)^2)$
- $G = \text{GL}(n)^3$
- π given by
 \[(g_1, g_2, g_3) \cdot (A_1, A_2) = (g_1 A_1 g_3^\dagger, g_2 A_2 g_3^\dagger).
 \]
- $\mu : \mathcal{V} \rightarrow \text{Herm}(n)^3$ given by
 \[
 \mu : [A_1, A_2] \mapsto \frac{(A_1 A_1^\dagger, A_2 A_2^\dagger, A_1^\dagger A_1 + A_2^\dagger A_2)}{\|A_1\|^2 + \|A_2\|^2}.
 \]

Thus, image of

\[
\mathcal{V} \xrightarrow{\mu} \text{Herm}(n)^3 \xrightarrow{\text{take eigs.}} (\mathbb{R}^n)^3
\]

is the* solution set of the Horn problem!
Why are moment polytopes interesting?

Encode asymptotic representation theory of coordinate ring of \mathcal{V}!

Theorem (Mumford, Ness ’84, Brion ’87)

Let $V_{G,\lambda}$ denote irrep of G of type λ. Then

$$\bigcup_k \frac{1}{k} \{ \lambda : V_{G,\lambda} \subset \mathbb{C}[\mathcal{V}]_k \} = \Delta(\mathcal{V}) \cap \mathbb{Q}^n!$$

Additional math (Schur-Weyl duality, Saturation [KT00])

Horn polytope $\cap (\mathbb{Z}^n)^3 = \{(\lambda_1, \lambda_2, \lambda_3) : V_{GL(n),\lambda_3} \in V_{GL(n),\lambda_1} \otimes V_{GL(n),\lambda_2}\}$
Why are moment polytopes interesting?

Encode asymptotic representation theory of coordinate ring of \mathcal{V}!

Theorem (Mumford, Ness ’84, Brion ’87)

Let V_G,λ denote irrep of G of type λ. Then

$$\bigcup_k \frac{1}{k} \{ \lambda : V_G,\lambda \subset \mathbb{C}[\mathcal{V}]_k \} = \Delta(\mathcal{V}) \cap \mathbb{Q}^n!$$

Additional math (Schur-Weyl duality, Saturation [KT00]) \Rightarrow

Horn polytope $\cap (\mathbb{Z}^n)^3 = \{ (\lambda_1, \lambda_2, \lambda_3) : V_{GL(n)},\lambda_3 \in V_{GL(n)},\lambda_1 \otimes V_{GL(n)},\lambda_2 \}$
Why are moment polytopes interesting?

Encode asymptotic representation theory of coordinate ring of \mathcal{V}!

Theorem (Mumford, Ness ’84, Brion ’87)

Let $V_{G,\lambda}$ denote irrep of G of type λ. Then

$$\bigcup_{k}^1 \left\{ \lambda : V_{G,\lambda} \subset \mathbb{C}[\mathcal{V}]_k \right\} = \Delta(\mathcal{V}) \cap \mathbb{Q}^n!$$

Additional math (Schur-Weyl duality, Saturation [KT00]) \implies

Horn polytope $\cap (\mathbb{Z}^n)^3 = \left\{ (\lambda_1, \lambda_2, \lambda_3) : V_{GL(n),\lambda_3} \in V_{GL(n),\lambda_1} \otimes V_{GL(n),\lambda_2} \right\}$
Algorithmic tasks

Input $(\mathcal{V}, \pi, \lambda)$

- Projective variety \mathcal{V} as arithmetic circuit parametrizing it
- Representation π as its list of irreducible subrepresentations as elements of \mathbb{Z}^n
- Target $\lambda \in \mathbb{Q}^n$

1. **membership**: determine whether λ in $\Delta(\mathcal{V})$.
2. **ε-search**: given $\lambda \in \mathbb{R}^n$, either find an element $\nu \in \lambda$ such that
 - $\|\mu(\nu) - \text{diag}(\lambda)\| < \varepsilon$, OR
 - correctly declare $\lambda \notin \Delta(\mathcal{V})$.

 i.e. find an approximate preimage under μ!

$1/\exp(\text{poly})$-search suffices for membership!
Algorithmic tasks

Input $(\mathcal{V}, \pi, \lambda)$

- Projective variety \mathcal{V} as arithmetic circuit parametrizing it
- Representation π as its list of irreducible subrepresentations as elements of \mathbb{Z}^n
- Target $\lambda \in \mathbb{Q}^n$

1. **membership**: determine whether λ in $\Delta(\mathcal{V})$.
2. **ε-search**: given $\lambda \in \mathbb{R}^n$, either find an element $v \in \lambda$ such that
 - $\|\mu(v) - \text{diag}(\lambda)\| < \varepsilon$, OR
 - correctly declare $\lambda \notin \Delta(\mathcal{V})$.

 i.e. find an approximate preimage under μ!

1/exp(poly)-search suffices for membership!
Algorithmic tasks

Input $(\mathcal{V}, \pi, \lambda)$

- Projective variety \mathcal{V} as arithmetic circuit parametrizing it
- Representation π as its list of irreducible subrepresentations as elements of \mathbb{Z}^n
- Target $\lambda \in \mathbb{Q}^n$

1. **membership:** determine whether λ in $\Delta(\mathcal{V})$.
2. **ε-search:** given $\lambda \in \mathbb{R}^n$, either find an element $v \in \lambda$ such that
 - $\|\mu(v) - \text{diag}(\lambda)\| < \varepsilon$, OR
 - correctly declare $\lambda \notin \Delta(\mathcal{V})$.

 i.e. find an approximate preimage under μ!

$1/exp(\text{poly})$-search suffices for membership!
Algorithmic tasks

Input \((\mathcal{V}, \pi, \lambda)\)

- Projective variety \(\mathcal{V}\) as arithmetic circuit parametrizing it
- Representation \(\pi\) as its list of irreducible subrepresentations as elements of \(\mathbb{Z}^n\)
- Target \(\lambda \in \mathbb{Q}^n\)

1. **membership**: determine whether \(\lambda\) in \(\Delta(\mathcal{V})\).
2. \(\varepsilon\)-search: given \(\lambda \in \mathbb{R}^n\), either find an element \(v \in \lambda\) such that
 - \(\|\mu(v) - \text{diag}(\lambda)\| < \varepsilon\), OR
 - correctly declare \(\lambda \notin \Delta(\mathcal{V})\).
 i.e. find an approximate preimage under \(\mu\)!

\(1/\exp(poly)\)-search suffices for membership!
Algorithmic tasks

Input \((\mathcal{V}, \pi, \lambda)\)

- Projective variety \(\mathcal{V}\) as arithmetic circuit parametrizing it
- Representation \(\pi\) as its list of irreducible subrepresentations as elements of \(\mathbb{Z}^n\)
- Target \(\lambda \in \mathbb{Q}^n\)

1. **membership:** determine whether \(\lambda\) in \(\Delta(\mathcal{V})\).
2. **\(\varepsilon\)-search:** given \(\lambda \in \mathbb{R}^n\), either find an element \(\nu \in \lambda\) such that
 - \(\|\mu(\nu) - \text{diag}(\lambda)\| < \varepsilon\), OR
 - correctly declare \(\lambda \notin \Delta(\mathcal{V})\).
 i.e. find an approximate preimage under \(\mu\)!

\(1/\exp(\text{poly})\)-search suffices for membership!
Algorithm for ε-search for Horn polytope (F18)

Input: $(\lambda_1, \lambda_2, \lambda_3) \in (\mathbb{R}^n)^3$ and $\varepsilon > 0$.

1. Choose A_1, A_2 at random. Define

$$ \mu_1 = A_1 A_1^\dagger, \quad \mu_2 = A_2 A_2^\dagger, \quad \mu_3 = A_1^\dagger A_1 + A_2^\dagger A_2. $$

Want $\mu_i = \text{diag}(\lambda_i)$

2. while $\|\mu_3 - \text{diag}(\lambda_3)\| > \varepsilon$, do:
 a. Choose B upper triangular such that $B^\dagger \mu_3 B = \text{diag}(\lambda_3)$,
 Set $A_i \leftarrow A_i B$.
 b. For $i \in 1, 2$, choose B_i upper triangular s.t. $B_i^\dagger \mu_i B_i = \text{diag}(\lambda_i)$,
 Set $A_i \leftarrow B_i^\dagger A_i$.

3. output μ_1, μ_2, μ_3.

Algorithm for ε-search for Horn polytope (F18)

Input: $(\lambda_1, \lambda_2, \lambda_3) \in (\mathbb{R}^n)^3$ and $\varepsilon > 0$.

1. Choose A_1, A_2 at random. Define

 $$\mu_1 = A_1 A_1^\dagger, \quad \mu_2 = A_2 A_2^\dagger, \quad \mu_3 = A_1^\dagger A_1 + A_2^\dagger A_2.$$

 Want $\mu_i = \text{diag}(\lambda_i)$

2. while $\|\mu_3 - \text{diag}(\lambda_3)\| > \varepsilon$, do:

 a. Choose B upper triangular such that $B^\dagger \mu_3 B = \text{diag}(\lambda_3)$,

 Set $A_i \leftarrow A_i B$.

 b. For $i \in 1, 2$, choose B_i upper triangular s.t. $B_i^\dagger \mu_i B_i = \text{diag}(\lambda_i)$,

 Set $A_i \leftarrow B_i^\dagger A_i$.

3. output μ_1, μ_2, μ_3.

Algorithm for ε-search for Horn polytope (F18)

Input: $(\lambda_1, \lambda_2, \lambda_3) \in (\mathbb{R}^n)^3$ and $\varepsilon > 0$.

1. Choose A_1, A_2 at random. Define

\[\mu_1 = A_1 A_1^\dagger, \quad \mu_2 = A_2 A_2^\dagger, \quad \mu_3 = A_1^\dagger A_1 + A_2^\dagger A_2. \]

Want $\mu_i = \text{diag}(\lambda_i)$

2. **while** $\|\mu_3 - \text{diag}(\lambda_3)\| > \varepsilon$, **do:**

 a. Choose B upper triangular such that $B^\dagger \mu_3 B = \text{diag}(\lambda_3)$,

 Set $A_i \leftarrow A_i B$.

 b. For $i \in 1, 2$, choose B_i upper triangular s.t. $B_i^\dagger \mu_i B_i = \text{diag}(\lambda_i)$,

 Set $A_i \leftarrow B_i^\dagger A_i$.

3. **output** μ_1, μ_2, μ_3.
Algorithm for ε-search for Horn polytope (F18)

Input: $(\lambda_1, \lambda_2, \lambda_3) \in (\mathbb{R}^n)^3$ and $\varepsilon > 0$.

1. Choose A_1, A_2 at random. Define
 \[
 \mu_1 = A_1 A_1^\dagger, \quad \mu_2 = A_2 A_2^\dagger, \quad \mu_3 = A_1^\dagger A_1 + A_2^\dagger A_2.
 \]
 Want $\mu_i = \text{diag}(\lambda_i)$

2. while $\|\mu_3 - \text{diag}(\lambda_3)\| > \varepsilon$, do:
 a. Choose B upper triangular such that $B^\dagger \mu_3 B = \text{diag}(\lambda_3)$,
 Set $A_i \leftarrow A_i B$.
 b. For $i \in 1, 2$, choose B_i upper triangular s.t. $B_i^\dagger \mu_i B_i = \text{diag}(\lambda_i)$,
 Set $A_i \leftarrow B_i^\dagger A_i$.

3. output μ_1, μ_2, μ_3.
Algorithm for ε-search for Horn polytope (F18)

Input: $(\lambda_1, \lambda_2, \lambda_3) \in (\mathbb{R}^n)^3$ and $\varepsilon > 0$.

1. Choose A_1, A_2 at random. Define

$$
\mu_1 = A_1 A_1^\dagger, \quad \mu_2 = A_2 A_2^\dagger, \quad \mu_3 = A_1^\dagger A_1 + A_2^\dagger A_2.
$$

Want $\mu_i = \text{diag}(\lambda_i)$

2. while $\|\mu_3 - \text{diag}(\lambda_3)\| > \varepsilon$, do:

 a. Choose B upper triangular such that $B^\dagger \mu_3 B = \text{diag}(\lambda_3)$,

 Set $A_i \leftarrow A_i B$.

 b. For $i \in 1, 2$, choose B_i upper triangular s.t. $B_i^\dagger \mu_i B_i = \text{diag}(\lambda_i)$,

 Set $A_i \leftarrow B_i^\dagger A_i$.

3. output μ_1, μ_2, μ_3.
The case $\lambda = 0$ is the null-cone problem from Ankit’s talk!

1. Is membership in P?
 - For tori ($G = \mathbb{C}_X^n$) Folklore, [SV17]
 - For Horn polytope, by saturation conjecture [MNS12]
 - For $\lambda = 0$ for quiver representations [GGOW16, IQS17, BFGOWW19]

2. Is it in RP?
 - We think so in general, but no proof yet!

3. Is it in NP or $coNP$?
 - In $NP \cap coNP$ for $\mathcal{V} = \mathbb{P}(\mathbb{C}^m)$ [BCM17]
 - Not known in general!
Complexity of moment polytope membership?

The case $\lambda = 0$ is the null-cone problem from Ankit’s talk!

1. Is membership in \mathbf{P}?
 - For tori ($G = \mathbb{C}^n$) Folklore, [SV17]
 - For Horn polytope, by saturation conjecture [MNS12]
 - For $\lambda = 0$ for quiver representations [GGOW16, IQS17, BFGOWW19]

2. Is it in \mathbf{RP}?
 - We think so in general, but no proof yet!

3. Is it in \mathbf{NP} or \mathbf{coNP}?
 - In $\mathbf{NP} \cap \mathbf{coNP}$ for $\mathcal{V} = \mathbb{P}(\mathbb{C}^m)$ [BCM17]
 - Not known in general!
Complexity of moment polytope membership?

The case $\lambda = 0$ is the null-cone problem from Ankit’s talk!

1. Is membership in P?
 - For tori ($G = \mathbb{C}^n$) Folklore, [SV17]
 - For Horn polytope, by saturation conjecture [MNS12]
 - For $\lambda = 0$ for quiver representations [GGOW16, IQS17, BFGOWW19]

2. Is it in RP?
 - We think so in general, but no proof yet!

3. Is it in NP or $coNP$?
 - In $NP \cap coNP$ for $\mathcal{V} = \mathbb{P}(\mathbb{C}^m)$ [BCMWW17]
 - Not known in general!
General algorithms
Convert ε-search to an optimization problem

For $b \in B :=$ upper triangular matrices, define

$$\text{cap}_\lambda(v) := \inf_{b \in B} \frac{\|b \cdot v\|}{\prod_i |b_{ii}|^{\lambda_i}}.$$

Kempf-Ness Theorem

$$\lambda \in \Delta(\mathcal{V}) \iff \text{cap}_\lambda(v) > 0 \text{ for generic } v \in \mathcal{V}$$

ε-search reduces to finding algorithm for the following:

- Given b with $\|\mu(b \cdot v) - \text{diag}(\lambda)\| > \varepsilon$,
- Output b' with

$$\frac{\|b' \cdot v\|}{\prod_i |b'_{ii}|^{\lambda_i}} < (1 - \delta) \frac{\|b \cdot v\|}{\prod_i |b_{ii}|^{\lambda_i}}.$$
Convert ε-search to an optimization problem

For $b \in B :=$ upper triangular matrices, define

$$\text{cap}_\lambda(v) := \inf_{b \in B} \frac{\|b \cdot v\|}{\prod_i |b_{ii}|^{\lambda_i}}.$$

Kempf-Ness Theorem

$$\lambda \in \Delta(\mathcal{V}) \iff \text{cap}_\lambda(v) > 0 \text{ for generic } v \in \mathcal{V}$$

ε-search reduces to finding algorithm for the following:

- Given b with $\|\mu(b \cdot v) - \text{diag}(\lambda)\| > \varepsilon$,
- Output b' with

 $$\frac{\|b' \cdot v\|}{\prod_i |b'_{ii}|^{\lambda_i}} < (1 - \delta) \frac{\|b \cdot v\|}{\prod_i |b_{ii}|^{\lambda_i}}.$$
Convert ε-search to an optimization problem

For $b \in B := $ upper triangular matrices, define

$$\text{cap}_\lambda(v) := \inf_{b \in B} \frac{\|b \cdot v\|}{\prod_i |b_{ii}| \lambda_i}.$$

Kempf-Ness Theorem

$$\lambda \in \Delta(V) \iff \text{cap}_\lambda(v) > 0 \text{ for generic } v \in V$$

ε-search reduces to finding algorithm for the following:

- Given b with $\|\mu(b \cdot v) - \text{diag}(\lambda)\| > \varepsilon$,
- Output b' with

$$\frac{\|b' \cdot v\|}{\prod_i |b'_{ii}| \lambda_i} < (1 - \delta) \frac{\|b \cdot v\|}{\prod_i |b_{ii}| \lambda_i}.$$

11
Convert ε-search to an optimization problem

For $b \in B :=$ upper triangular matrices, define

$$\text{cap}_\lambda(v) := \inf_{b \in B} \frac{\|b \cdot v\|}{\prod_i |b_{ii}|^{\lambda_i}}.$$

Kempf-Ness Theorem

$$\lambda \in \Delta(\mathcal{V}) \iff \text{cap}_\lambda(v) > 0 \text{ for generic } v \in \mathcal{V}$$

ε-search reduces to finding algorithm for the following:

- Given b with $\|\mu(b \cdot v) - \text{diag}(\lambda)\| > \varepsilon$,
- Output b' with

$$\frac{\|b' \cdot v\|}{\prod_i |b'_{ii}|^{\lambda_i}} < (1 - \delta) \frac{\|b \cdot v\|}{\prod_i |b_{ii}|^{\lambda_i}}.$$
Optimization algorithms

Alternating minimization: \(\text{poly}(1/\varepsilon) \) time [BFGOWW18]

- Tensor products of easy reps e.g. Horn, \(k \)-tensors

\[\log \text{cap}_\lambda(v) \text{ can be cast as a geodesically convex program!} \]

Domain is positive-semidefinite matrices; geodesics through \(P \) take the form \(\sqrt{P} e^{Ht} \sqrt{P} \)

Geodesic gradient descent: \(\text{poly}(1/\varepsilon) \) time [BFGOWW19]

- Any representation, e.g. \(V = \wedge^k \mathbb{C}^n, \text{Sym}^k \mathbb{C}^n \), arbitrary quivers

Geodesic trust-regions: \(\text{poly}(\log(1/\varepsilon), \log \kappa) \) time [BFGOWW19]

- \(\kappa \) is smallest condition-number of an \(\varepsilon \)-optimizer for \(\text{cap}_\lambda(v) \)
- Polynomial for some interesting cases, e.g. arbitrary quivers with \(\lambda = 0 \)
Optimization algorithms

Alternating minimization: \(\text{poly}(1/\varepsilon) \) time [BFGOWW18]

- Tensor products of easy reps e.g. Horn, \(k \)-tensors

\[
\log \text{cap}_\lambda(\nu) \text{ can be cast as a geodesically convex program!}
\]

Domain is positive-semidefinite matrices; geodesics through \(P \) take the form \(\sqrt{P} e^{Ht} \sqrt{P} \)

Geodesic gradient descent: \(\text{poly}(1/\varepsilon) \) time [BFGOWW19]

- Any representation, e.g. \(\mathcal{V} = \wedge^k \mathbb{C}^n, \text{Sym}^k \mathbb{C}^n \), arbitrary quivers

Geodesic trust-regions: \(\text{poly}(\log(1/\varepsilon), \log \kappa) \) time [BFGOWW19]

- \(\kappa \) is smallest condition-number of an \(\varepsilon \)-optimizer for \(\text{cap}_\lambda(\nu) \)
- polynomial for some interesting cases, e.g. arbitrary quivers with \(\lambda = 0 \)
Optimization algorithms

Alternating minimization: \(\text{poly}(1/\varepsilon) \) time [BFGOWW18]

- Tensor products of easy reps e.g. Horn, \(k \)-tensors

\[\log \text{cap}_\lambda(\nu) \text{ can be cast as a geodesically convex program!} \]

Domain is positive-semidefinite matrices; geodesics through \(P \) take the form \(\sqrt{P} e^{Ht} \sqrt{P} \)

Geodesic gradient descent: \(\text{poly}(1/\varepsilon) \) time [BFGOWW19]

- Any representation, e.g. \(\mathcal{V} = \bigwedge^k \mathbb{C}^n, \text{Sym}^k \mathbb{C}^n \), arbitrary quivers

Geodesic trust-regions: \(\text{poly}(\log(1/\varepsilon), \log \kappa) \) time [BFGOWW19]

- \(\kappa \) is smallest condition-number of an \(\varepsilon \)-optimizer for \(\text{cap}_\lambda(\nu) \)
 - polynomial for some interesting cases, e.g. arbitrary quivers with \(\lambda = 0 \)
Optimization algorithms

Alternating minimization: \(\text{poly}(1/\varepsilon)\) time [BFGOWW18]

- Tensor products of easy reps e.g. Horn, \(k\)-tensors

\(\log \text{cap}_\lambda(\nu)\) can be cast as a \textit{geodesically convex program}!

Domain is positive-semidefinite matrices; geodesics through \(P\) take the form \(\sqrt{P} e^{Ht} \sqrt{P}\)

Geodesic gradient descent: \(\text{poly}(1/\varepsilon)\) time [BFGOWW19]

- Any representation, e.g. \(V = \bigwedge^k \mathbb{C}^n, \text{Sym}^k \mathbb{C}^n\), arbitrary quivers

Geodesic trust-regions: \(\text{poly}(\log(1/\varepsilon), \log \kappa)\) time [BFGOWW19]

- \(\kappa\) is smallest condition-number of an \(\varepsilon\)-optimizer for \(\text{cap}_\lambda(\nu)\)
- Polynomial for some interesting cases, e.g. arbitrary quivers with \(\lambda = 0\)
Open problems

1. Is moment polytope membership in $\text{NP} \cap \text{coNP}$, or even RP or P?

2. Membership is in P for Horn’s problem. But how about $\exp(-\text{poly})$-search?

3. If (A_1, A_2) a random pair of matrices, does $\text{cap}_\lambda(A_1, A_2)$ have an ϵ-minimizer with condition number at most

$$\exp(\text{poly}(\log(1/\epsilon), \langle \lambda \rangle))$$
Open problems

1. Is moment polytope membership in $\mathbf{NP} \cap \mathbf{coNP}$, or even \mathbf{RP} or \mathbf{P}?
2. Membership is in \mathbf{P} for Horn’s problem. But how about $\exp(-\text{poly})$-search?
3. If (A_1, A_2) a random pair of matrices, does $\text{cap}_\lambda(A_1, A_2)$ have an ε-minimizer with condition number at most

$$\exp(\text{poly}(\log(1/\varepsilon), \langle \lambda \rangle))$$
Merci!