Quantum Brascamp-Lieb Inequalities

Michael Walter

ICMP, August 2021

based on joint work with Mario Berta and David Sutter

arXiv:1909.02383
Overview

geometric inequalities \longleftrightarrow entropy inequalities

Brascamp-Lieb inequalities have wide range of applications and satisfy beautiful duality. We study a quantum formulation, motivated by the desire to identify new tools to proving entropy inequalities.

Plan for today:

1. Introduction
2. Quantum BL duality, applications and connections
3. Geometric quantum BL inequalities
Overview

Brascamp-Lieb inequalities have wide range of applications and satisfy beautiful duality. We study a quantum formulation, motivated by the desire to identify new tools to proving entropy inequalities.

Plan for today:

1. Introduction
2. Quantum BL duality, applications and connections
3. Geometric quantum BL inequalities
Classical Brascamp-Lieb inequalities

For $B_k : \mathbb{R}^m \to \mathbb{R}^{m_k}$ linear, $q_k > 0$, $C > 0$, an inequality of the form

$$\int_{\mathbb{R}^m} \prod_{k=1}^n |f_k(B_k x)| \, dx \leq C \prod_{k=1}^n \|f_k\|_1^{1/q_k} \quad \forall f_k$$

This generalizes many classical integral inequalities (Hölder, Young, ...)
Many proofs, applications, variations...

- Optimal C can be computed by optimizing over Gaussian f_k. [Lieb]
- When is C finite? Fully classified. [Bennett et al]
- How to compute C efficiently? Still partly open! [Garg et al]

Geometric case: B_k projections s.th. $\sum_{k=1}^n q_k B_k^* B_k = I_m$.
Classical Brascamp-Lieb inequalities

For $B_k: \mathbb{R}^m \to \mathbb{R}^{mk}$ linear, $q_k > 0$, $C > 0$, an inequality of the form

$$\int_{\mathbb{R}^m} \prod_{k=1}^n |f_k(B_k x)| \, dx \leq C \prod_{k=1}^n \|f_k\|_1^{1/q_k} \quad \forall f_k$$

This generalizes many classical integral inequalities (Hölder, Young, ...)
Many proofs, applications, variations...

- Optimal C can be computed by optimizing over Gaussian f_k. [Lieb]
- When is C finite? Fully classified. [Bennett et al]
- How to compute C efficiently? Still partly open! [Garg et al]

Geometric case: B_k projections s.th. $\sum_{k=1}^n q_k B_k^* B_k = I_m$.
Duality and entropy

BL inequality is dual to ‘subadditivity’ inequality for differential entropy:

\[
\sum_{k=1}^{n} q_k S(B_k X) \geq S(X) - \log C \quad \forall \text{RV } X \text{ on } \mathbb{R}^m
\]

Apart from information theoretic interest, equivalence also enables new proof techniques (heat flow). [Carlen–Cordero-Erausquin]

The duality can be generalized to arbitrary channels and relative entropies. Framework includes hypercontractivity, strong data processing, etc. [Liu et al]

Our results: Quantum version of the general duality and applications. In addition, quantum version of the geometric BL inequalities on \(L^2(\mathbb{R}^m) \).
Duality and entropy

BL inequality is dual to ‘subadditivity’ inequality for differential entropy:

$$\sum_{k=1}^{n} q_k S(B_k X) \geq S(X) - \log C \quad \forall \text{ RV } X \text{ on } \mathbb{R}^m$$

Apart from information theoretic interest, equivalence also enables new proof techniques (heat flow). [Carlen–Cordero-Erausquin]

The duality can be generalized to arbitrary channels and relative entropies. Framework includes hypercontractivity, strong data processing, etc. [Liu et al]

Our results: Quantum version of the general duality and applications. In addition, quantum version of the geometric BL inequalities on $L^2(\mathbb{R}^m)$.
Result: Quantum Brascamp-Lieb Duality

Let $\mathcal{E}_k: L(\mathcal{H}) \rightarrow L(\mathcal{H}_k)$ positive & TP, $q_k > 0$, σ, $\sigma_k > 0$, $C > 0$. Then the following are equivalent:

$$\sum_{k=1}^{n} q_k \, D(\mathcal{E}_k(\rho) \| \sigma_k) \leq D(\rho \| \sigma) + \log C \quad \forall \text{ states } \rho$$

and

$$\text{tr} \, e^{\log \sigma + \sum_{k=1}^{k} \mathcal{E}_k^*(\log \omega_k)} \leq C \prod_{k=1}^{n} \| e^{\log \omega_k + q_k \log \sigma_k} \|_{1/q_k} \quad \forall \omega_k > 0$$

- Proof via Legendre: $D(\rho \| \sigma) = \sup_{\omega > 0} \{ \text{tr} \, \rho \log \omega - \log \text{tr} \, e^{\log \omega + \log \sigma} \}$ [Petz]
- Not clear which side looks more intimidating . . .
- Useful choices: $\sigma_k = \mathcal{E}_k(\sigma)$ or $\sigma_k = I$, $\sigma = I$
Result: Quantum Brascamp-Lieb Duality

Let $\mathcal{E}_k : L(\mathcal{H}) \to L(\mathcal{H}_k)$ positive & TP, $q_k > 0$, σ, $\sigma_k > 0$, $C > 0$. Then the following are equivalent:

\[
\sum_{k=1}^{n} q_k D(\mathcal{E}_k(\rho) \| \sigma_k) \leq D(\rho \| \sigma) + \log C \quad \forall \text{ states } \rho
\]

and

\[
\text{tr} e^{\log \sigma + \sum_{k=1}^{k} \mathcal{E}_k^*(\log \omega_k)} \leq C \prod_{k=1}^{n} \| e^{\log \omega_k + q_k \log \sigma_k} \| 1/q_k \quad \forall \omega_k > 0
\]

- Proof via Legendre: $D(\rho \| \sigma) = \sup_{\omega > 0} \{ \text{tr} \rho \log \omega - \log \text{tr} e^{\log \omega + \log \sigma} \}$ [Petz]
- Not clear which side looks more intimidating. . .
- Useful choices: $\sigma_k = \mathcal{E}_k(\sigma)$ or $\sigma_k = I$, $\sigma = I$
When specializing to $\sigma_k = I, \sigma = I$, recover equivalence between

$$\sum_{k=1}^{n} q_k S(\mathcal{E}_k(\rho)) \geq S(\rho) - \log C \quad \forall \text{ states } \rho$$

and

$$\text{tr} e^{\sum_{k=1}^{k} \mathcal{E}_k^*(\log \omega_k)} \leq C \prod_{k=1}^{n} \| \omega_k \|^{1/q_k} \quad \forall \omega_k > 0$$

For example, can prove uncertainty relations via trace inequalities, as pioneered by Frank-Lieb:

- Maassen-Uffink: $S(X) + S(Z) \geq S(\rho) + 1$ via Golden-Thompson
- Six-state [Coles et al]: $S(X) + S(Y) + S(Z) \geq S(\rho) + 2$ via Lieb 3-matrix
Without side information

When specializing to $\sigma_k = I$, $\sigma = I$, recover equivalence between

$$\sum_{k=1}^{n} q_k S(\mathcal{E}_k(\rho)) \geq S(\rho) - \log C \quad \forall \text{ states } \rho$$

and

$$\text{tr} \left(e^{\sum_{k=1}^{n} \mathcal{E}_k^*(\log \omega_k)} \right) \leq C \prod_{k=1}^{n} \| \omega_k \|_{1/q_k}^{1/q_k} \quad \forall \omega_k \succ 0$$

For example, can prove uncertainty relations via trace inequalities, as pioneered by Frank-Lieb:

- Maassen-Uffink: $S(X) + S(Z) \geq S(\rho) + 1$ via Golden-Thompson
- Six-state [Coles et al]: $S(X) + S(Y) + S(Z) \geq S(\rho) + 2$ via Lieb 3-matrix
Applications and questions

- Can we prove new **uncertainty relations** involving multiple measurements (and even general quantum channels)? N-matrix GT?

- **Strong data-processing** inequalities fall into the framework:
 \[
 D(\mathcal{E}(\rho)\|\mathcal{E}(\sigma)) \leq \eta D(\rho\|\sigma) \quad \forall \rho
 \]

- Tensorization holds classically, but fails quantumly:
 \[(\mathcal{E}, C) \& (\mathcal{E}', C') \not\Rightarrow (\mathcal{E} \otimes \mathcal{E}', C \cdot C')\]
 Examples include **non-additivity** of minimal output entropy. Useful?

- Computational complexity of testing validity of (families of) BL ineqs?

- Relation to works by Carlen-Maas?
Back to geometry...

Recall the classical Brascamp-Lieb inequalities in the geometric case:

\[
\sum_{k=1}^{n} q_k S(P_k X) \geq S(X) \quad \forall \text{ RV } X \text{ on } \mathbb{R}^m
\]

with \(P_k \) projections onto subspaces \(V_k \subseteq \mathbb{R}^m \) s.th. \(\sum_{k=1}^{n} q_k P_k = I_m \).

How can we formulate a quantum version? For any subspace \(V \subseteq \mathbb{R}^m \),

\[
L^2(\mathbb{R}^m) = L^2(V \oplus V^\perp) = L^2(V) \otimes L^2(V^\perp)
\]

hence can define reduced state \(\rho_V \) for any state \(\rho \) on \(L^2(\mathbb{R}^m) \).

This generalizes the usual partial trace. In general, can interpret as state of subset of modes after subjecting \(\rho \) to network of beamsplitters.
Back to geometry...

Recall the classical Brascamp-Lieb inequalities in the geometric case:

\[\sum_{k=1}^{n} q_k S(P_k X) \geq S(X) \quad \forall \text{ RV } X \text{ on } \mathbb{R}^m \]

with \(P_k \) projections onto subspaces \(V_k \subseteq \mathbb{R}^m \) s.th. \(\sum_{k=1}^{n} q_k P_k = I_m \).

How can we formulate a quantum version? For any subspace \(V \subseteq \mathbb{R}^m \),

\[L^2(\mathbb{R}^m) = L^2(V \oplus V^\perp) = L^2(V) \otimes L^2(V^\perp) \]

hence can define reduced state \(\rho_V \) for any state \(\rho \) on \(L^2(\mathbb{R}^m) \).

This generalizes the usual partial trace. In general, can interpret as state of subset of modes after subjecting \(\rho \) to network of beamsplitters.
Theorem

Let P_k projections onto subspaces $V_k \subseteq \mathbb{R}^m$ s.th. $\sum_{k=1}^{n} q_k P_k = I_m$. Then, for all states ρ on $L^2(\mathbb{R}^m)$ with finite first and second moments:

$$\sum_{k=1}^{n} q_k S(\rho_{V_k}) \geq S(\rho)$$

- For coordinate subspaces recover quantum Shearer inequality. [Carlen-Lieb]
- But already nontrivial for “Mercedes star” configuration in \mathbb{R}^2:

 ▶️

- Also holds conditioned on side information. [Ligthard]
- Can generate more ineqs. via Gaussian unitaries: $\text{Sp}_{2m} \circledast L^2(\mathbb{R}^m) \ldots$
Sketch of proof

\[\sum_{k=1}^{n} q_k S(\rho_{V_k}) \geq S(\rho) \]

Implement classical proof strategy of Carlen–Cordero-Erausquin using quantum heat flow of König-Smith:

\[\frac{d}{dt} \rho = - \sum_{j=1}^{m} [Q_j, [Q_j, \rho]] + [P_j, [P_j, \rho]] \]

Asymptotic scaling of entropy: \(S(\rho_{V(t)}) \sim \dim V \log t \)

- Inequality holds at \(t = \infty \) if \(\sum_{k} q_k \dim V_k \geq m \).

Quantum de Bruijn identity: \(\frac{d}{dt} S(\rho) = J(\rho) \), a Fisher information.

- Can prove reverse inequality for Fisher information if \(\sum_{k} q_k P_k \leq I_m \):

\[\sum_{k=1}^{n} q_k J(\rho_{V_k}) \leq J(\rho) \]
Sketch of proof

\[\sum_{k=1}^{n} q_k S(\rho_{V_k}) \geq S(\rho) \]

Implement classical proof strategy of Carlen–Cordero-Erausquin using quantum heat flow of König-Smith:

\[\frac{d}{dt} \rho = - \sum_{j=1}^{m} \{Q_j, \{Q_j, \rho\}\} + \{P_j, \{P_j, \rho\}\} \]

Asymptotic scaling of entropy: \(S(\rho_{V(t)}) \sim \dim V \log t \)

- Inequality holds at \(t = \infty \) if \(\sum_k q_k \dim V_k \geq m \).

Quantum de Bruijn identity: \(\frac{d}{dt} S(\rho) = J(\rho) \), a Fisher information.

- Can prove reverse inequality for Fisher information if \(\sum_k q_k P_k \leq I_m \):

\[\sum_{k=1}^{n} q_k J(\rho_{V_k}) \leq J(\rho) \]

cf. [De Palma–Trevisan]
Gaussian BL beyond the geometric case

There is a natural action of Sp_{2m} on $L^2(\mathbb{R}^m)$ by Gaussian unitaries. Any symplectic matrix $B \in \mathbb{R}^{2m' \times 2m}$ determines subsystem of m' modes, so we can define reduced state ρ_B on $L^2(\mathbb{R}^{m'})$ for any state ρ on $L^2(\mathbb{R}^m)$.

This notion generalizes the reduced state ρ_V for subspaces $V \subseteq \mathbb{R}^m$ and leads naturally to the following class of Gaussian quantum BL inequalities:

$$\sum_{k=1}^{n} q_k S(\rho_{B_k}) \geq S(\rho) + c$$

where the $B_k \in \mathbb{R}^{2m_k \times 2m}$ symplectic matrices. When does it hold?

Recent result (De Palma–Trevisan): Assuming $\sum_{k=1}^{n} q_k m_k = m$, inequality holds for all quantum states iff holds for all probability densities!
Gaussian BL beyond the geometric case

There is a natural action of Sp_{2m} on $L^2(\mathbb{R}^m)$ by Gaussian unitaries. Any symplectic matrix $B \in \mathbb{R}^{2m' \times 2m}$ determines subsystem of m' modes, so we can define reduced state ρ_B on $L^2(\mathbb{R}^{m'})$ for any state ρ on $L^2(\mathbb{R}^m)$.

This notion generalizes the reduced state ρ_V for subspaces $V \subseteq \mathbb{R}^m$ and leads naturally to the following class of Gaussian quantum BL inequalities:

$$
\sum_{k=1}^{n} q_k S(\rho_{B_k}) \geq S(\rho) + c
$$

where the $B_k \in \mathbb{R}^{2m_k \times 2m}$ symplectic matrices. When does it hold?

Recent result (De Palma–Trevisan): Assuming $\sum_{k=1}^{n} q_k m_k = m$, inequality holds for all quantum states iff holds for all probability densities!
Gaussian BL beyond the geometric case

There is a natural action of Sp_{2m} on $L^2(\mathbb{R}^m)$ by Gaussian unitaries. Any symplectic matrix $B \in \mathbb{R}^{2m' \times 2m}$ determines subsystem of m' modes, so we can define reduced state ρ_B on $L^2(\mathbb{R}^{m'})$ for any state ρ on $L^2(\mathbb{R}^m)$.

This notion generalizes the reduced state ρ_V for subspaces $V \subseteq \mathbb{R}^m$ and leads naturally to the following class of Gaussian quantum BL inequalities:

$$\sum_{k=1}^{n} q_k S(\rho_{B_k}) \geq S(\rho) + c$$

where the $B_k \in \mathbb{R}^{2m_k \times 2m}$ symplectic matrices. When does it hold?

Recent result (De Palma–Trevisan): Assuming $\sum_{k=1}^{n} q_k m_k = m$, inequality holds for all quantum states iff holds for all probability densities!

- Also holds conditioned on side information.
- Can also include “classical” outputs (≈ quadrature measurements)
- Proof again based on quantum heat flow strategy!
Outlook

<table>
<thead>
<tr>
<th>trace inequalities</th>
<th>BL</th>
<th>entropy inequalities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>duality</td>
<td></td>
</tr>
</tbody>
</table>

Duality between quantum relative entropy inequalities and trace inequalities. **Unifying framework** to tackle information theoretic questions. New family of **geometric** quantum Brascamp–Lieb inequalities.

Many exciting directions:

- Uncertainty relations from n-matrix GT?
- Sufficient conditions for tensorization?
- Applications of new trace inequalities?
- Other applications of quantum heat flow?
- ...

Thank you for your attention!