Kronecker coefficients and complexity theory

Michael Walter, Stanford University

University of Rome Tor Vergata, March 2016
Kronecker coefficients and complexity theory

Michael Walter, Stanford University

University of Rome Tor Vergata, March 2016
Young diagrams

Young diagram λ:
- row lengths $\lambda_1 \geq \ldots \geq \lambda_m \geq 0$
- partition of k into $\leq m$ parts

They parametrize the irreducible representations of:

Symmetric group S_k:
Specht module $[\lambda]$

General linear group $GL(m)$:
Weyl module \bigvee_{λ}^m
Well-known decompositions

Clebsch-Gordan rule for SU(2):

\[V_i \otimes V_j = \bigoplus_{k=|i-j|}^{i+j} V_k \]

Schur-Weyl duality:

\[\left(\mathbb{C}^m \right)^{\otimes k} = \bigoplus_{\lambda} \mathbb{V}_{\lambda}^m \otimes \mathbb{V}_{\lambda} \]

e.g., \[\mathbb{V}_{\lambda} \] is the symmetric subspace
Littlewood-Richardson coefficients

\[V^m_\lambda \otimes V^m_\nu = \bigoplus \bigodot \mathbf{c}^\lambda_\nu \downarrow V^m_\nu \]

Littlewood-Richardson rule:

\[\mathbf{c}^\lambda_\nu = \# \text{ of LR tableaux of shape } \nu/\lambda \text{ with weight } \rho \]

Honeycomb and hive models: [Knutson-Tao]

\[\mathbf{c}^\lambda_\nu = \# \text{ of honeycombs with boundary conditions} \\
= \# \text{ of integral hives with boundary conditions} \]

Both formulas count **combinatorial gadgets** – they are **evidently positive**!

Moreover, we can efficiently determine if nonzero. [Mulmuley-Sohoni]
Littlewood-Richardson coefficients

\[V^m_\chi \otimes V^m_\rho = \bigoplus_v c^{\chi \rho}_{\nu} V^m_v \]

Saturation property: [Knutson-Tao]

\[c^{s_\lambda s_\rho}_{s_\nu} > 0 \implies c^{\chi \rho}_{\nu} > 0 \]

Symplectic geometry: directly related to eigenvalues of Hermitian matrices with

\[A + B = C \]

→ Horn’s inequalities
Kronecker coefficients

\[[\lambda] \otimes [\mu] = \bigoplus \mathcal{g}_{\lambda\mu \nu} [\nu] \]

Many interesting connection to other areas of mathematics & applications (→later).
In part via:

\[\text{Sym}^k (C^m \otimes C^m \otimes C^m) = \bigoplus \mathcal{g}_{\lambda\mu \nu} V^m \otimes V^m \otimes V^m \]

Despite 75+ years of history, many properties remain poorly understood!

Littlewood-Richardson coefficients are special Kronecker coefficients.
Kronecker coefficients: formulas

$$[\lambda] \otimes [\mu] = \bigoplus \chi_{\lambda \Box \mu} [\gamma]$$

Explicit formulas in various special cases:
- Two rows
- Hooks

[Orellana et al], [Blasiak-Mulmuley-Sohoni]
[Remmel], [Blasiak]

Recent progress on the Saxl conjecture:

$$g_{\Box g} > 0 \text{ whenever } g =$$

[Ikenmeyer], [Pak-Panova-Vallejo]

Open problem: Find combinatorial interpretation!
Kronecker coefficients: asymptotics

\[G(m) = \{ (\lambda, \mu, \nu) : g_{\lambda \mu \nu} > 0 \} \]

Asymptotic support is convex cone: symplectic geometry [Mumford], [Kirwan]

outside: \(g \geq 0 \)
inside: \(\exists s: g_{s \lambda, s \mu, s \nu} > 0 \)

in general, \(s > 1 \): failure of saturation, ”holes”!

\(g_{\lambda \mu \nu} \) is piecewise quasi-polynomial. [Meinrenken-Sjamaar]

Various other asymptotics have been studied:
Motivation I: The Kronecker polytopes

\[\Delta(m) = \left\{ \frac{(\lambda, \mu, \nu)}{k} : g_{\lambda \mu \nu} > 0 \right\} \]

...is a convex polytope: the Kronecker polytope.

More generally: moment polytope associated with arbitrary representation of a compact connected Lie group.

- explicit inequalities known [Klyachko, Berenstein-Sjamaar, Ressayre, Vergne-W.]

- efficient algorithms of high interest in quantum physics: quantum marginal problem

Another example: Littlewood-Richardson coefficients give rise to Horn polytopes.
Motivation II: Geometric complexity theory

How many multiplications are required to multiply 2 x 2 matrices?

\[
\begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{bmatrix}
=
\begin{bmatrix}
 a_{11} \cdot b_{11} + a_{12} \cdot b_{21} & a_{11} \cdot b_{12} + a_{12} \cdot b_{22} \\
 \vdots & \vdots
\end{bmatrix}
\]

In fact, 7 < 8 are enough! $\Rightarrow O(n^{2.807\ldots})$ elementary multiplications for n x n matrices.

Best known algorithm: $O(n^{2.3729\ldots})$

What is the minimal exponent of matrix multiplications?
Motivation II: Geometric complexity theory

Idea: Rephrase in terms of tensor varieties, study using algebraic geometry!

\[v_{\text{hard}} \in \mathbb{M}_n \otimes \mathbb{M}_n \otimes \mathbb{M}_n^* \subseteq \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m \]

\[v_{\text{easy}} = \sum_{i=1}^{r} e_i \otimes e_i \otimes e_i \quad G = G(L(C^m))^\mathbb{C} \]

The goal is to show that: \[v_{\text{hard}} \in G \cdot v_{\text{easy}} \]

This would imply that we need \(r \) elementary multiplications for \(n \times n \) matrices.

[Burgisser-Ikenmeyer]

Landsberg: \(r=7 \) is optimal for \(n=2 \). Similarly: Permanent vs. determinant (Valiant’s conjecture).
Representation-theoretic obstructions

Instead of determining equations for the varieties, we seek to find "representation-theoretic obstructions":

\[V_\lambda \subseteq R(G \cdot v_{\text{hard}}) \quad \text{but} \quad V_\lambda \not\subseteq R(G \cdot v_{\text{easy}}) \]

This naturally leads to certain Kronecker coefficients and related multiplicities (symmetric Kronecker coefficients, plethysms, ...). E.g.:

\[
\begin{array}{c}
G \\
\end{array} \quad \begin{array}{c}
\lambda \\
\end{array}
\]

[Buergisser-Landsberg-Manivel-Weyman]

Much recent work on Kronecker coefficients has been motivated by this connection to geometric complexity theory.
Kronecker coefficients: mathematical challenges

\[[\lambda] \otimes [\mu] = \bigoplus \mathcal{g}_{ \lambda \mu \nu} [\nu] \]

1. Decide when a Kronecker coefficient is non-zero!
 Asymptotic polytopes well-understood, but failure of saturation makes it “difficult”.

2. Find a positive, combinatorial formula!
 Like the Littlewood-Richardson rule.

3. Understand the failure of saturation!
 Minimal stretching factor? How to find holes?

This talk: Explicitly study the complexity of these problems!
Computational complexity primer
Computational complexity theory

Study of computational problems: decision problems ("is n a prime?") and counting problems ("how many prime factors does n have?").

Central question: What is the difficulty of a computational problem?

I.e., can we hope for an efficient solution? Or will all algorithms take a long time? Contrast with computability theory ("does there exist any algorithm") & algorithm engineering ("find a fast algorithm").
The complexity class P

Problem instance → **Algorithm** → **Answer**

Input, encoded in bits

P: Computational problems that admit an **efficient** algorithm. *i.e., runtime polynomial in the input size*

Intuition: Those are the computationally feasible problems.

Examples: Linear algebra; linear optimization; min-cut; Fourier transforms; ...
Often due to mathematical structure, dualities, ...

We may then zoom in and ask for the most efficient algorithm & matching lower bounds. E.g., know how to multiply two n by n matrices in time $O(n^{2.372})$ [Le Gall], but best lower bound is $3n^2 - o(n^2)$ [Landsberg]!
The complexity class NP

Not all decision problems are known to admit an efficient algorithm. But often the answer can be efficiently verified! e.g., factoring a number vs. verifying a factorization; coloring a graph vs. checking a coloring

NP: If answer “YES” then there exists small certificate that can be efficiently verified.

Can be rather nontrivial to prove that a problem is in NP (e.g., UNKNOT). Many problems not in NP.
P vs. NP

P: There exists an efficient algorithm.

NP: If answer YES then there exists small certificate that can be efficiently verified.

Conjecture: \(P \neq NP \).

Widely believed to be true, for empirical as well as philosophical reasons:

“Surely, finding a proof must be harder than verifying it...”

Interestingly, there are proofs that exclude entire proof strategies of \(P \neq NP \)!
A glimpse at the complexity landscape

P: There exists an efficient algorithm.

NP: If answer YES then there exists small certificate that can be efficiently verified.

CoNP: If answer NO then there exists small certificate that can be efficiently verified.

Only a small part of the complexity landscape (time, space, random, quantum, ...).
Comparing complexity

X can be **reduced to** Y if X can be solved efficiently using an efficient algorithm for Y.

Y is **NP-hard** if any problem in NP can be reduced to Y.

Y is **NP-complete** if NP-hard and contained in NP.

NP-complete problems exist! [Cook], [Levin]

In fact, many natural combinatorial problems are NP-complete. [Karp]

If any NP-complete problem has an efficient solution, then P=NP.

Various possible definitions of reduction (reuse, post-processing, ...).
Complexity of *counting* problems

P: There exists an efficient algorithm.

NP: If answer YES then there exists small certificate that can be efficiently verified.

#P: Answer = number of certificates accepted by an NP-algorithm.

[Valiant]

Natural complexity class for counting gadgets that are easily verified.

e.g., counting 3-colorings of a graph, integral hives, ...

Arguably what we would call a "positive, combinatorial formula"!

[Mulmuley]
Complexity & representation theory
Branching problems as computational problems

\[V = \bigoplus m_\lambda V_\lambda \]

- **Decision problem:** Decide if multiplicity > 0.
- **Counting problem:** Compute the multiplicity.

We may thus use computational complexity theory to study their difficulty!
Complexity of Littlewood-Richardson coefficients

\[V^m_\lambda \otimes V^m_\mu = \bigoplus c^m_{\nu} V^m_\nu \]

Input: Three Young diagrams such that \(|\lambda| + |\mu| = |\nu|\)

- **Decision problem:** P

 Proof relies on honeycombs & LP results. [Mulmuley-Sohoni]

- **Counting problem:** \#P-complete

 Combinatorial formula shows that in \#P. Hardness by reduction from contingency tables. [Narayanan]

Thus *any* other \#P problem can be solved by computing LR coefficients! E.g., exists mapping \{graphs\} \rightarrow \{Young diagrams\} s.th. \# of 3-colorings = f(LR coeff).

Consequences largely unexplored...
Complexity of Kronecker coefficients

\[[\lambda] \otimes [\mu] = \bigoplus \mathfrak{S}_{\mu \nu} [\nu] \]

Input: Three Young diagrams such that \(|\lambda| = |\mu| = |\nu|\)

- **Decision problem**: \(\text{NP-hard} \) Is it in \(\text{NP} \)? [Ikenmeyer-Mulmuley-W.]

 This was previously conjectured to be in \(\text{P} \)!
 “Hopeless” to look for efficient algorithm (i.e., to find a simple characterization).

- **Counting problem**: \(\#\text{P-hard} \) Is there a \(\#\text{P} \) formula?

 ...since LR coefficients are special Kronecker coefficients.

For Young diagrams of **bounded height**, both problems in \(\text{P} \)! [Christandl-Doran-W.]
Sketch of proof

Theorem: Deciding positivity of Kronecker coefficients is **NP-hard.**

Alternative characterization: \[\# \bigwedge_{m} V_{\mu}^{m} \otimes V_{\nu}^{m} \subseteq \bigwedge^{n} (C^{m} \otimes \mathbb{C}) \]

Weight vectors = **point sets;** weight = **slice sums**

Deciding if there exists a point set with given slice sums is **NP-hard.** [Brunetti et al]

Relevant point sets are always “pyramids” \(\rightarrow\) correspond to **highest weight vectors.**
The failure of saturation

We are interested in finding examples of “holes”:

\[g_{xy} = 0 \quad \text{but} \quad g_{xyz} > 0 \quad \text{for some} \quad s > 1 \]

Corollary: There exist “many” such holes and they can be constructed explicitly and efficiently.

Proof: We have a sequence of injective reductions

\[
\begin{align*}
&\quad \text{3D MATCHING} \quad \rightarrow \quad \text{4D PARTITION} \quad \rightarrow \quad \ldots \quad \rightarrow \quad \text{3D CONSISTENCY} \quad \rightarrow \quad \text{KRONECKER>0}
\end{align*}
\]

& 3D MATCHING has many “NO” instances.

The resulting holes are significantly beyond current methods – cannot even verify!
Asymptotic positivity

We may also consider the asymptotic positivity problem:
Given three Young diagrams,

$$\exists s: g_{xs} g_{ys} g_{sr} > 0 ?$$

That is, is the triple contained in the cone $C(m) ?$

Theorem: Deciding asymptotic positivity is in NP and CoNP.

- Suggests hardness of positivity problem is in part due to failure of saturation.
Sketch of proof

Theorem: Deciding asymptotic positivity is in NP and CoNP.

NP: Certificate is vector in $(\mathbb{C}^n)^{\otimes^3}$

Point in polytope can be computed efficiently. We prove that finite precision is not an issue (walls of polytope are not too steep).

CoNP: Certificate is separating hyperplane $\mathcal{H}_{1,2}$

Inequality can be verified efficiently (if also [Vergne-W.] given point at which to evaluate determinant polynomial).

Generalization to arbitrary groups, representations requires efficient algs for Lie algebra representation. 30/31
Summary

#P = “combinatorial formula” \hspace{1cm} \textit{NP-hardness of the positivity problem} \hspace{1cm} \text{explicit “holes”}

Complexity theory: conceptual framework for studying the difficulty of mathematical problems; a theory that can yield new mathematical results

New challenges in representation theory motivated by applications in geometric complexity theory, theoretical quantum physics
Thank you for your attention