Entanglement Polytopes

Multi-Particle Entanglement from Single-Particle Information

Michael Walter

joint work with Matthias Christandl, Brent Doran (ETH Zürich), and David Gross (Univ. Freiburg)
Multi-Particle Entanglement

How entangled is a given multi-particle quantum state prepared in the laboratory?
Multi-Particle Entanglement

How entangled is a given multi-particle quantum state prepared in the laboratory?

What (if anything) can be said using *local tomography*? efficient!
Multi-Particle Entanglement

How entangled is a given multi-particle quantum state prepared in the laboratory?

What (if anything) can be said using local tomography?

globally pure

efficient!
Pure-State Entanglement

A pure state $\rho = |\psi\rangle\langle\psi|$ is entangled if and only if

\[|\psi\rangle \neq |\psi_1\rangle \otimes \ldots \otimes |\psi_N\rangle \]

Equivalent:

ρ is unentangled iff all reduced density matrices ρ_k are pure.
A pure state $\rho = |\psi\rangle\langle\psi|$ is entangled if and only if

$$|\psi\rangle \neq |\psi_1\rangle \otimes \ldots \otimes |\psi_N\rangle$$

Equivalent:

ρ is unentangled iff all reduced density matrices ρ_k are pure.

can verify using local tomography
Two Qubits

Schmidt decomposition

\[|\psi\rangle = \sqrt{\lambda} |00\rangle + \sqrt{1 - \lambda} |11\rangle \]

\((0.5 \leq \lambda \leq 1) \)
Two Qubits

Schmidt decomposition

\[|\psi\rangle = \sqrt{\lambda} |00\rangle + \sqrt{1 - \lambda} |11\rangle \]

maximal eigenvalue

\[\rho_1, \rho_2 \sim \begin{pmatrix} \lambda & \varepsilon \\ \varepsilon & 1 - \lambda \end{pmatrix} \]

\(\mathbb{C}^2 \otimes \mathbb{C}^2 \)

(0.5 \leq \lambda \leq 1)
Two Qubits

Schmidt decomposition

\[|\psi\rangle = \sqrt{\lambda} |00\rangle + \sqrt{1-\lambda} |11\rangle \]

(0.5 \leq \lambda \leq 1)

maximal eigenvalue

\[\rho_1, \rho_2 \sim \begin{pmatrix} \lambda & 0 \\ 0 & 1-\lambda \end{pmatrix} \]

Two classes

product states

entangled states

\[\times \sqrt{0.5} (|00\rangle + |11\rangle) \]
Two Qubits

Schmidt decomposition

\[|\psi\rangle = \sqrt{\lambda} |00\rangle + \sqrt{1 - \lambda} |11\rangle \]

(maximal eigenvalue)

\[\rho_1, \rho_2 \sim \begin{pmatrix} \lambda & \sqrt{1 - \lambda} \\ \sqrt{1 - \lambda} & 1 - \lambda \end{pmatrix} \]

Two classes

product states

entangled states

\[\text{can be converted into } \sqrt{0.5} (|00\rangle + |11\rangle) \text{ by local operations and post-selection (SLOCC)} \]
Eigenvalues of reduced density matrices characterize entanglement of global state.

Two Qubits

Schmidt decomposition

\[|\psi\rangle = \sqrt{\lambda} |00\rangle + \sqrt{1 - \lambda} |11\rangle \]

(0.5 \leq \lambda \leq 1)

maximal eigenvalue

Two classes

product states

entangled states

Eigenvalues of reduced density matrices characterize entanglement of global state.
Multi-Partite Systems

- **no** Schmidt decomposition
- rank of reduced density matrices **not** enough
- generically: **infinitely** many classes, labeled by \(\exp(N) \) many continuous parameters

\[|\psi\rangle \]
Multi-Partite Systems

- no Schmidt decomposition
- rank of reduced density matrices not enough
- generically: infinitely many classes, labeled by \(\exp(N) \) many continuous parameters

\[
| \psi \rangle
\]

Eigenvalues of reduced density matrices can still give useful information!
Three Qubits

Six classes

\[|GHZ\rangle = |000\rangle + |111\rangle \]
\[|W\rangle = |100\rangle + |010\rangle + |001\rangle \]
\[|B1\rangle = |0\rangle \otimes (|00\rangle + |11\rangle) \]
\[|B2\rangle, |B3\rangle \]
\[|000\rangle \]

Dür, Vidal & Cirac (2000)

Han, Zhang & Guo (2004)
Botero & Mitchison (p.c.)
Sawicki, W. & Kus (2012)
Three Qubits

Six classes

\[|GHZ\rangle = |000\rangle + |111\rangle \]
\[|W\rangle = |100\rangle + |010\rangle + |001\rangle \]
\[|B1\rangle = |0\rangle \otimes (|00\rangle + |11\rangle) , \]
\[|B2\rangle, |B3\rangle \]
\[|000\rangle \]

maximal eigenvalues of \(\rho_1, \rho_2, \rho_3 \)

Dür, Vidal & Cirac (2000)

Han, Zhang & Guo (2004)
Botero & Mitchison (p.c.)
Sawicki, W. & Kus (2012)
Three Qubits

Six classes

\[|GHZ\rangle = |000\rangle + |111\rangle \]
\[|W\rangle = |100\rangle + |010\rangle + |001\rangle \]
\[|B1\rangle = |0\rangle \otimes (|00\rangle + |11\rangle) , \]
\[|B2\rangle, |B3\rangle \]
\[|000\rangle \]

Han, Zhang & Guo (2004)
Botero & Mitchison (p.c.)
Sawicki, W. & Kus (2012)

Dür, Vidal & Cirac (2000)
Three Qubits

Six classes

\[|GHZ\rangle = |000\rangle + |111\rangle \]
\[|W\rangle = |100\rangle + |010\rangle + |001\rangle \]
\[|B1\rangle = |0\rangle \otimes (|00\rangle + |11\rangle) \]
\[|B2\rangle, |B3\rangle \]
\[|000\rangle \]

Han, Zhang & Guo (2004)
Botero & Mitchison (p.c.)
Sawicki, W. & Kus (2012)

Dür, Vidal & Cirac (2000)
Three Qubits

Six classes

\[|GHZ\rangle = |000\rangle + |111\rangle \]
\[|W\rangle = |100\rangle + |010\rangle + |001\rangle \]
\[|B1\rangle = |0\rangle \otimes (|00\rangle + |11\rangle) , \]
\[|B2\rangle, |B3\rangle \]
\[|000\rangle \]

Dür, Vidal & Cirac (2000)

Han, Zhang & Guo (2004)
Botero & Mitchison (p.c.)
Sawicki, W. & Kus (2012)
Three Qubits

Six classes

\[|\text{GHZ}\rangle = |000\rangle + |111\rangle \]
\[|W\rangle = |100\rangle + |010\rangle + |001\rangle \]
\[|B1\rangle = |0\rangle \otimes (|00\rangle + |11\rangle) \]
|B2\rangle, |B3\rangle

|000\rangle

Dür, Vidal & Cirac (2000)

Han, Zhang & Guo (2004)
Botero & Mitchison (p.c.)
Sawicki, W. & Kus (2012)
Three Qubits

Six classes

\[|GHZ\rangle = |000\rangle + |111\rangle \]
\[|W\rangle = |100\rangle + |010\rangle + |001\rangle \]
\[|B1\rangle = |0\rangle \otimes (|00\rangle + |11\rangle) \]
\[|B2\rangle, |B3\rangle \]
\[|000\rangle \]

Dür, Vidal & Cirac (2000)

Han, Zhang & Guo (2004)
Botero & Mitchison (p.c.)
Sawicki, W. & Kus (2012)
Three Qubits

Six classes

\(|\text{GHZ}\rangle = |000\rangle + |111\rangle\)
\(|W\rangle = |100\rangle + |010\rangle + |001\rangle\)
\(|B1\rangle = |0\rangle \otimes (|00\rangle + |11\rangle)\),
\(|B2\rangle, |B3\rangle\)
\(|000\rangle\)

Lower pyramid is witness for GHZ class!

Dür, Vidal & Cirac (2000)

Han, Zhang & Guo (2004)
Botero & Mitchison (p.c.)
Sawicki, W. & Kus (2012)
Entanglement Polytopes

\[\Delta_C = \{ \vec{\lambda} = (\lambda_1, \ldots, \lambda_N) \text{ for } \psi \in \mathcal{C} \} \]
Entanglement Polytopes

Our main results:

- convex polytope!
- finite hierarchy
- algorithm to compute using computational invariant theory (difficult)

\[\Delta_C = \{ \vec{\lambda} = (\lambda_1, \ldots, \lambda_N) \text{ for } \psi \in \mathcal{C} \} \]

using results from Brion (1987), Kempf & Ness (1979)

algebraic geometry / GIT
Entanglement Polytopes

Our main results:

- convex polytope!
- finite hierarchy
- algorithm to compute using computational invariant theory

using results from Brion (1987), Kempf & Ness (1979) algebraic geometry / GIT

\[\Delta_c = \{ \vec{\lambda} = (\lambda_1, \ldots, \lambda_N) \text{ for } \psi \in \overline{C} \} \]

cf. Quantum Marginal Problem

Klyachko (2004)
Entanglement Criterion

- efficient, requires only linearly many measurements
- robust against small noise ($\psi \approx$ pure)
Entanglement Criterion

- efficient, requires only linearly many measurements
- robust against small noise ($\psi \approx$ pure)

$\vec{\lambda} \notin \Delta C \implies \psi \notin C$

“Bell inequalities”

violation of “Bell inequality”
Purity and Noise

Purity: \(p = \text{tr} \rho^2 \)
(can be estimated using two-body measurements)

Fact: If \(p \geq 1 - \varepsilon \) then there exists a pure state \(|\psi\rangle \) with \(\langle \psi | \rho | \psi \rangle \geq 1 - \varepsilon \) whose local eigenvalues differ by \(\lesssim N\varepsilon \).

Impurity enlarges effective error bars!
Thank you!

Multi-Particle Entanglement from Single-Particle Information

http://www.itp.phys.ethz.ch/people/waltemic/polytopes

arXiv:1208.0365