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Abstract—Recent advancements in machine learning al-
gorithms have transformed the data analytics domain and
provided innovative solutions to inherently difficult problems.
However, training models at scale over large data sets remains
a daunting challenge. One such problem is the detection of
overlapping communities within graphs. For example, a social
network can be modeled as a graph where the vertices and
edges represent individuals and their relationships. As opposed
to the problem of graph partitioning or clustering, an individ-
ual can be part of multiple communities which significantly
increases the problem complexity. In this paper, we present and
evaluate an efficient parallel and distributed implementation of
a Stochastic Gradient Markov Chain Monte Carlo algorithm
that solves the overlapping community detection problem. We
show that the algorithm can scale and process graphs consisting
of billions of edges and tens of millions of vertices on a compute
cluster of 65 nodes. To the best of our knowledge, this is the first
time that the problem of deducing overlapping communities
has been learned for problems of such a large scale.

Keywords-Distributed computing; Parallel programming;
High performance computing; Performance analysis; Machine
learning;

I. INTRODUCTION

The tremendous amount of data that we generate through
our daily applications such as social networking services, on-
line shopping, and news recommendations, provides us with
an opportunity to extract hidden but useful, even invaluable
information. Realizing this opportunity, however, requires
a significant amount of effort because traditional machine
learning algorithms often become extremely inefficient with
large amounts of data.

There have been two main approaches to resolving this
issue; machine learning researchers have developed new
scalable algorithms [1], [2], while systems and networking
researchers have worked on developing new generic infras-
tructure systems which can be leveraged to construct ma-
chine learning solutions more efficiently [3], [4]. However,
the best possible performance is often achieved by carefully
integrating both of these approaches in a single solution.

One such big data problem is analyzing large graphs such
as social networks where it is not unusual to see a network

consisting of billions of edges and tens of million of ver-
tices [5]. In particular, we are interested in the overlapping
community detection problem [6], where the goal is to learn
the probability distribution of each vertex to participate in
each community, given a set of vertices, the links between
them (which are usually very sparse), and the number of
latent communities. A community can be seen as a densely
connected group of vertices that are only sparsely connected
to the rest of the network. This problem is significantly
more complex than the related domain of detecting disjoint
communities.

The problem of detecting overlapping communities is
modeled by the mixed membership stochastic blockmodels
(MMSB) [7] and in this paper we are particularly interested
in a variant of MMSB, called assortative MMSB (a-MMSB1)
[8]. The MMSB model is a probabilistic graphical model [9]
that represents a convenient paradigm for modeling complex
relationships between a potentially large number of random
variables. Bayesian graphical models, where we define pri-
ors and infer posteriors over parameters, also allow us to
quantify model uncertainty and facilitate model selection
and averaging. However, an increasingly urgent question is
whether these models and their inference procedures will be
up to the challenge of handling very large graphs.

There have been two main recent advances in this
direction of scalable Bayesian inference: methods based
on stochastic variational Bayes (SVB) [8], [10], [11]
and stochastic gradient Markov chain Monte Carlo (SG-
MCMC) [12], [13], [14], [15]. Both methods have the
important property that they only require a small subset of
the data for every iteration. In other words, they can be
applied to (infinite) streaming data.

In this paper, we focus on the SG-MCMC method applied
to the a-MMSB model. Recent work [16] showed that this
methodology is faster and more accurate than the SVB
method. [16] further proposes a heuristic to scale up the

1Although we work on a-MMSB for simplicity, it is also straightforward
to apply the proposed method to the general MMSB model.



number of communities at the cost of less precision; the
work in this paper scales the algorithm without that heuristic
with a custom high-performance implementation. To this
end, we propose a design of a parallel and distributed
system specifically tailored to solve the a-MMSB problem.
In particular, we use a mixture of OpenMP, MPI and RDMA
in order to efficiently scale and accelerate the algorithm’s
computation.

Achieving this goal necessitated overcoming several chal-
lenges. First, the algorithm’s state grows rapidly with larger
graphs and number of latent communities. Since the full state
information is too large to fit in a single machine’s memory,
it is partitioned and distributed across a cluster of machines.
Second, to access the full state, each cluster node must read
remote memory hosted by its peers. We leveraged RDMA
to limit the high latency of such operations and increase the
communication bandwidth. To reduce the latency further,
we pipelined the algorithm’s computations such that data
can be fetched in advance over the network. Finally, the
algorithm’s computation is effectively distributed across the
cluster nodes and parallelized further within each node by
exploiting their multi-core CPUs.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the algorithm and its
theoretical foundation. The design and implementation of
the parallel and distributed solution is presented in Section 3.
Section 4 evaluates the efficacy of the system and analyzes
its performance. Finally, Section 5 provides concluding
remarks.

II. BACKGROUND

A. Assortative Mixed-membership Stochastic Blockmodels
(a-MMSB)

The assortative mixed membership stochastic blockmodel
(a-MMSB) [8] is a special case of MMSB [7] that models
the group structure in a network of N vertices. Consider a
set V containing all the vertices in the graph, and a set E
containing all the linked edges between pairs of vertices.
Each vertex a in the vertex set V has a K-dimensional
probability distribution πa of participating in the K members
of the community set K. For every possible peer b in the
network, each vertex a randomly draws a community zab.
If a pair of vertices (a, b) in the edge set E are in the
same community, i.e., zab = zba = k, then they have a
significant probability βk to connect, i.e., yab = 1. Otherwise
this probability is a small value δ. Each community has its
connection strength βk ∈ (0, 1) which reflects how likely
its members are linked to each other. The whole generative
process of a-MMSB is then described by:

1) For each community k, draw community strength
βk ∼ Beta(η)

2) For each vertex a, draw community memberships
πa ∼ Dirichlet(α)

3) For each pair of vertices a and b,
a) Draw interaction indicator zab ∼ πa
b) Draw interaction indicator zba ∼ πb
c) Draw link yab ∼ Bernoulli(r), where r = βk if

zab = zba = k, and r = δ otherwise.
η and α are parameters to the Beta and Dirichlet distribution
functions.

B. Stochastic Gradient Markov Chain Monte Carlo

The algorithm we are working on in this paper is based on
stochastic gradient Langevin dynamics (SGLD) [12]. SGLD
applies the following update rule to obtain samples from a
posterior distribution p(θ|X ) ∝ p(X|θ)p(θ) of N i.i.d. data
points X = {xi}Ni=1:

θ∗ ← θ +
εt
2

(∇θ log p(θt) +Nḡ(θ;Dn)) + ξt, (1)

where ξt ∼ N (0, εt) with εt the step size, Dn a mini-
batch of size n sampled from X , and ḡ(θ;Dn) the mean
stochastic gradient, i.e., 1

|Dn|
∑
x∈Dn

∇θ log p(x|θ). As the
step size goes to zero by a schedule satisfying

∑∞
t=1 εt =∞

and
∑∞
t=1 ε

2
t < ∞, SGLD samples from the true posterior

distribution. One benefit of using SGLD is that we do not
need the Metropolis-Hastings (MH) accept-reject tests since
the rejection probability goes to zero as the step size tends
to zero. Although in practice we often do not reduce the
stepsize to zero to obtain better mixing (thus resulting in
some bias), we obtain good performance by drawing many
more samples per unit time.

SGLD originated from the Langevin Monte Carlo
(LMC) [17], where unlike SGLD the gradient is computed
exactly by using all data points. Then, Metropolis-Hastings
accept-reject tests are applied. Comparing to LMC, SGLD
only requires to process a mini-batch Dn at each iteration
and ignores the MH test, and thus the computation complex-
ity substantially reduces from O(N) to O(n).

Stochastic gradient Riemannian Langevin dynamics
(SGRLD) [13] is a subclass of SGLD which is developed to
efficiently sample from the probability simplex. By applying
Riemannian geometry [17] and using the mini-batch-based
estimator in Eq. 1, it achieved state-of-the-art performance
for latent Dirichlet allocation (LDA) [18]. In particular,
for a K-dimensional probability simplex π, it uses the
expanded-mean re-parameterization trick, where the prob-
ability of a category k is given by πk = θk/

∑K
j=1 θj with

θk ∼ Gamma(α, 1) and α a hyperparameter of the Dirichlet
distribution p(π|α). Then, the update rule of SGRLD is:

θ∗k ←

∣∣∣∣∣θk +
εt
2

(
α− θk +

N

|Dn|
∑
d∈Dn

gd(θk)

)
+ (θk)

1
2 ξt

∣∣∣∣∣ , (2)

here gd(θk) is the gradient of the log posterior w.r.t. θk on
a data point d ∈ Dn.



C. Scalable MCMC for a-MMSB

This section describes the SG-MCMC algorithm for a-
MMSB. Please refer to [16] for more details. The algorithm
iterates updating local parameter π and global parameter
β. Since both parameters lie on the probability simplex,
SGRLD is applied to make the sampling process more
efficient. Here, the parameters φ and θ are used to re-
parameterize π and β respectively. After updating φ and θ,
we can obtain π and β by normalizing φ and θ respectively,
see Table I. In the following, we briefly sketch the iterative
update steps.

Sampling global parameters: The update rule for
global parameter θ is

θ∗ki ←

∣∣∣∣∣∣θki +
ε

2

η − θki + h(En)
∑

(a,b)∈En

gab(θki)


+(θki)

1
2 ξki

∣∣∣ , (3)

where the gradient in θ is

gab(θki) =
f
(y)
ab (k, k)

Z
(y)
ab

(
|1− i− y|

θki
− 1∑

j θkj

)
, (4)

here En is a mini-batch of nt vertex pairs sampled from
E or E; h(En) is a weight factor to scale the effect of a
mini-batch towards the full network; and

f
(y)
ab (k, l) =

{
βyk(1− βk)(1−y)πakπbk, if k = l

δy(1− δ)(1−y)πakπbl, if k 6= l.

Z
(y)
ab is the normalization constant which we can compute

in O(K) time [16].
Sampling local parameters: The update rule for the

local parameters φ is

φ∗ak ←

∣∣∣∣∣φak +
ε

2

(
α− φak +

N

|Vn|
∑
b∈Vn

gab(φak)

)
+(φak)

1
2 ξak

∣∣∣ , (5)

where the gradient in φ is

gab(φak) =
f
(y)
ab (k)

Z
(y)
ab φak

− 1∑
j φaj

. (6)

Here, Vn is the neighbor set for a mini-batch node, another
random mini-batch of n nodes sampled from V . Note that
|Vn| � |V| = N .

As is common in machine learning problems, the edges
of the graph are divided into two sets, the training set
and a held-out set Eh. As the performance metric we
use perplexity, which is defined as the exponential of the
negative average log-likelihood of the held-out set Eh. Given

Algorithm 1 Sequential version of SG-MCMC for a-MMSB
1: Initialize π, β, φ, θ
2: while sampling do
3: Sample mini-batch of vertex pairs En from E or E
4: for each vertex in En do
5: Sample mini-batch of vertices Vn from V
6: Update φa using Eq. 5
7: Obtain πa from φ∗a
8: end for
9: for k = 1, . . . ,K do

10: Update θk using Eq. 3
11: Obtain βk from θ∗k
12: end for
13: end while

a collection of T samples of the model parameters {βt} and
{πt}, the averaged perplexity on the held-out set Eh is

perpavg(Eh|{βt}, {πt})

= exp

(
−
∑

(a,b)∈Eh log{(1/T )
∑T
t=1 p(yab|βt, πt)}

|Eh|

)
.

(7)

The perplexity is not evaluated at every iteration, but at reg-
ular intervals. Convergence is reached when the perplexity
changes by less than a small threshold.

The pseudo-code of the sequential algorithm is presented
in Algorithm 1.

symbol type size description

K K set of communities

V {vertex} N vertices in the graph

E {edge} linked edges in the graph

E {edge} V × V : linked and nonlinked edges

Eh {edge} held-out subset of the graph

En {edge} sampled mini-batch of edges in E

M number of vertices in En
Vn {vertex} sampled neighbor set for a vertex in En

θ float vector
2-D

K × 2 reparameterization of β.
β[k] = θ[k][1]/

∑
j θ[k][j]

β float vector K community strength

φ float vector
2-D

N ×K reparameterization of π.
π[i][k] = φ[i][k]/

∑
j φ[i][j]

π float vector
2-D

N ×K π[i][k] is probability that vertex i is in
community k

Table I
DEFINITION OF MOST IMPORTANT SYMBOLS



D. Related work on parallel community detection

Among previous work on parallelizing MMSB algorithms,
we mention the Online Tensor approach [19] on GPUs,
and our previous parallel implementation of SG-MCMC
on GPUs and multi-core CPUs (submitted for publication).
There are a few projects that did a distributed implementa-
tion for community detection on very large network graphs.
In contrast to our work, they all detect non-overlapping
communities: [20] investigate a large number of networks;
[21] investigate hierarchical stochastic blockmodels; [22] use
multi-core machines.

III. SYSTEM DESIGN

The SG-MCMC algorithm described in the previous
section has an abundance of opportunities for parallelism,
for the multi-threaded shared-memory type as well as
for distributed-memory parallelism. The benefit of multi-
threaded parallelism is the speedup of the computation.
Additionally, a distributed implementation allows the storage
of data in the collective memory of a cluster and increases
aggregate memory bandwidth. Both of these parameters
scale with the number of machines. The downside of a
distributed implementation is that it requires considerably
more programming effort.

This section describes how we parallelized the algorithm,
which had been implemented sequentially in C++. The usage
of multi-threaded parallelism is straightforward, therefore,
we will discuss its details only where appropriate. The
distributed design follows a master-worker paradigm, where
the master controls the sequence of parallel operations and
the workers perform the calculations. For thread parallelism,
we annotate the program with OpenMP [23]. For distributed
communication, we use MPI [24].

A. Data distribution

The largest data structures of the algorithm are E , Eh,
π and φ, see Table I. For the largest dataset in this paper,
com-Friendster, E has 1.8 billion undirected edges. In our
representation with directed edges, this takes up 13.5GB.
Our design lets E reside only at the master’s. We observe
that the calculations in the update stages only require the
subset of E that is touched by the mini-batch vertices,
so the master scatters that subset to the workers together
with the scattering of the mini-batch vertices. This way, we
trade a reduction in memory usage at the workers against
limited communication costs. In contrast, Eh is replicated
at all machines for the neighbor sampling and the parallel
perplexity calculation.
π and φ are 32-bit float arrays of size K × N . For our

largest distributed experiment, com-Friendster with N=64M
and K=12K, each requires 3TB. We decided to store only π
and

∑
φ, and recalculate φ from these whenever appropriate.

Here, we trade a substantial gain in memory usage against

some computation. π is partitioned across the workers, and π
values are accessed via a DKV (distributed key-value) store.

The distribution within the graph of the vertices of
the mini-batch as well as the neighbor sets is completely
random. That means that there is no locality in π access
patterns, especially in the accesses to the neighbor sets
Vn. Hence, there is no opportunity to exploit data locality
through caching of π.

B. RDMA Distributed Key-Value Store

Modern network technology allows for Remote Direct
Memory Access (RDMA) through the network cards (NICs)
with negligible overhead [25], [26]. The use of RDMA
enables communicating peers to avoid the high latency for
interrupting a processor and waiting for it to act upon a
request. Instead, a process registers a region of memory that
can be directly accessed by the NIC. This has opened up
the development of efficient remote memory services, often
in the form of distributed key-value (DKV) stores.

The distributed algorithm implementation stores π in a
DKV store in the collective memory of the cluster, where
π[i] +

∑
φ[i] is the value for key i. We decided not to

use any of the existing implementations of RDMA DKV
stores, and instead build our own DKV store on top of the
Infiniband ib-verbs API. This is motivated by the fact that
our use case is unique in a number of important aspects.
First, the number of keys and values to be stored are constant
throughout the execution of the algorithm. For instance, no
records are dynamically inserted or deleted from the DKV
after their initial insertion, although the value associated
with each key can be updated. Additionally, all keys are
of the same type and represent a unique vertex in the graph.
Therefore, keys can be represented as integer identifiers.
Moreover, each key points to a vector of K + 1 floats as its
value. This data representation can be exploited to simplify
the management of read and write requests. Similarly, the
keys can be deterministically partitioned across the cluster
using a fast hash function.

The algorithm’s access pattern is well controlled be-
cause the computation is partitioned into stages that are
separated by barriers. A single stage either reads values
or updates values. The algorithm ensures that updates are
always targeting unique elements, therefore, there are no
read/write or write/write hazards. The existing DKV stores
(RamCloud [27], FaRM [28], and Herd [29]) incur overhead
for insert/delete flexibility, concurrency control, or variable-
sized values. Our use case allows us to do any operation in
exactly one RDMA read or RDMA write. Herd argues that
replacing RDMA reads by an RPC to the server, followed
by an unreliable write, is faster. However, the paper shows
this only holds for small payload packets, up to 256B. A π
packet in our application is typically thousands to hundreds
of thousands of 4-byte floats.



Name #Vertices #Edges #Ground-truth Description
communities

com-LiveJournal 3,997,962 34,681,189 287,512 Online blogging social network
com-Friendster 65,608,366 1,806,067,135 957,154 Online gaming social network
com-Orkut 3,072,441 117,185,083 6,288,363 Online social network
com-Youtube 1,134,890 2,987,624 8,385 Video-sharing social network
com-DBLP 317,080 1,049,866 13,477 Computer science bibliography collaboration network
com-Amazon 334,863 925,872 75,149 Product co-purchasing network

Table II
SUMMARY OF SNAP GRAPH DATA SETS USED FOR EVALUATION.

C. Implementation of distributed parallelism

This section describes the parallelization of each of the
stages of the algorithm’s main loop. All but the first stage
justify parallelization for high values of combinations of the
parameters mini-batch size |En|, number of vertices in the
mini-batch M , number of communities K, neighbor sample
size |Vn|, and held-out set size |Eh|.

The first stage, mini-batch selection (line 3 in Algo-
rithm 1), is done by the master and it is not itself paral-
lelized. However, the distributed implementation overlaps
its execution using pipeline parallelism while the workers
are performing update phi. The mini-batch is partitioned
equally over the workers and the relevant sections of E are
distributed together with the mini-batch subsets.

After a worker has received its subset of the mini-batch, it
samples a neighbor set Vn for each of its mini-batch vertices,
using thread parallelism (line 5 in Algorithm 1).

The next stage, update phi (line 6 in Algorithm 1), is the
algorithm’s dominant stage, not only in calculation but also
in memory accesses. It performs M × |Vn| ×K operations.
It can be fully parallelized because it is a data-parallel
operation over each of the mini-batch vertices. update phi
loads the π values for the local mini-batch vertices and
their neighbors from the DKV store. The updates to φ for
the mini-batch vertices are calculated independently using
thread parallelism.

These updates are used by update pi (line 7 in Algo-
rithm 1) locally, besides the value of π/φ for the mini-
batch vertices. The update to π requires M ×K operations,
and it is done in parallel over mini-batch vertices. Because
of memory consistency, this stage awaits completion of
update phi with an MPI barrier. After the calculation, the
updated values of π +

∑
φ are written to the DKV store.

update beta (lines 10 and 11 in Algorithm 1) requires
|En| × K operations. It is preceded by an MPI barrier to
ensure that up-to-date π values are read. update beta is
split into four steps. The first stage partitions the mini-batch
across machines to calculate contributions to gab(θ). The
values of π for the local mini-batch vertices are loaded
from the DKV store. These calculations are done with
thread parallelism over the mini-batch vertices. In the second
step, a multi-threaded summation is performed to calculate
the contributions per machine, followed by a distributed

summation using an MPI reduce operation. The third step
calculates β from θ sequentially at the master. This operation
takes only K steps. The resulting β is broadcast with MPI
to the workers.

The calculation of perplexity requires |Eh| × K steps.
Each of the machines owns a subset of Eh. It loads up-
to-date values of π for each vertex in its part of Eh, then
for each of its edges in Eh it calculates the contribution
to the perplexity using thread parallelism. The resulting
contributions are summed to the global perplexity value in
two stages, with a local OpenMP reduction followed by a
global MPI reduction.

Note that the calculation requirements per iteration do not
depend on N or |E∗|, the size of the network graph. How-
ever, larger graphs are expected to require more iterations
to achieve convergence.

D. Pipelining of computation and loading π

The distributed design features two instances of pipeline
parallelism. First, at the process level, sampling of the
minibatch by the master is decoupled from update phi by
the workers, so the master computes the minibatch for the
next iteration while the workers compute update phi for
the current iteration. Second, at the threads level within
the workers, loading of π and update phi are split up into
chunks, and the calculation in update phi for the current
chunk is done simultaneously with loading π for the next
chunk. The rationale for implementing pipeline parallelism
in these places of the program, is that loading π is the
dominant contribution within the dominant stage update phi,
as will be shown in Section IV-C. Since loading π is
the performance bottleneck of the distributed algorithm,
performing other work in parallel shortens the critical path.

IV. EVALUATION

This section presents an in-depth empirical analysis of
the design discussed in Section III. To this end, we assess
the scalability and efficiency of the solution using multi-
ple criteria. First, the weak scaling of the solution is as-
sessed with respect to increasing numbers of targeted latent
communities. Second, an evaluation of the strong scaling
behavior of the distributed algorithm is presented. Third,
the effects of pipelining the computation and varying the
number of latent communities on the system’s performance
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Figure 1. Average execution time per algorithm iteration when varying
the number of latent communities proportionally to the number of compute
nodes.

are analyzed. Next, we contrast the effectiveness of scaling
the computation horizontally and vertically. Further, we
evaluate the efficiency and overhead associated with network
communication between cluster nodes. Finally, we apply the
algorithm to large data sets and comment on its execution
time.

Empirical results for the distributed implementation were
obtained from experiments on the VU and Leiden University
DAS5 clusters which consist of 68 and 24 compute nodes
respectively. Each compute node is equipped with a dual 8-
core Intel Xeon E5-2630v3 CPU clocked at 2.40GHz, 64GB
of memory and 8TB of storage. Moreover, the compute
nodes of each site are interconnected by FDR InfiniBand.
The MPI implementation used is OpenMPI, which supports
user-space Infiniband [30].

We compared the distributed performance against a
shared-memory virtual machine at SURFsara’s HPC Cloud
system with 40 cores and 1TB of memory; its underlying
physical system contains 40 Intel Xeon E7-4850 cores
clocked at 2.00GHz, and it does not oversubscribe resources.

All of the experiments reported in this section utilized
publicly available graphs from the Stanford Large Network
Dataset Collection (SNAP) [31]. Table II lists the collection
of data sets used.

A. Weak Scaling

A study of a system’s weak scaling aids in the assessment
of the communication and synchronization overheads associ-
ated with the management of large clusters. Similarly, it can
expose complex issues that hinder performance at scale such
as load imbalance. To fairly evaluate the algorithm’s weak
scaling behavior we conducted several executions varying
the cluster size and the number of latent communities
proportionally. The number of communities is 192 times
the number of worker nodes in all runs. This methodology
ensures that each compute node performs an approximately
constant amount of computational work across all configura-
tions. However, the number and size of messages exchanged
between the nodes varies significantly. Figure 1 presents the
average execution time per algorithm iteration for different

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60  70

T
im

e
 (

S
e
c
o
n
d
s
)

Number of Nodes

(a) Execution time

total
deploy minibatch

update_phi_pi
update_beta_theta

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0  10  20  30  40  50  60  70

S
p
e
e
d
u
p
 w

.r
.t
. 
8
-n

o
d
e
 t
im

e

Number of Nodes

(b) Speedup w.r.t. 8-node time

total
deploy minibatch

update_phi_pi
update_beta_theta

Figure 2. (a) Execution time of 2048 algorithm iterations for the same
problem size (com-Friendster, K=1024, M=16384 n=32) across different
cluster sizes. (b) Speedup achieved for same experiments in (a) with respect
to 8 nodes

cluster sizes. This figure shows that the system’s overall
overhead is minimal. Additionally, the experimental results
show that the implementation is capable of achieving good
speedups provided the input problem is large enough for the
given cluster size.

B. Strong Scaling

In order to evaluate the horizontal scalability of the dis-
tributed implementation we tested the system’s performance
across different cluster sizes while holding the problem size
constant. For this study, we used the com-Friendster graph
as it contains the largest number of vertices and edges.
Figure 2-a presents the execution time of 2048 algorithm
iterations across multiple cluster sizes. The x-axis starts from
8 worker nodes as the data set is too large to fit into the
collective memory of a smaller cluster. As shown in the
figure, the execution time steadily decreases by increasing
the cluster size. A deeper analysis of the individual execution
phases of the algorithm provides insights into the scalability
of its building blocks. In addition to the total execution time,
Figure 2-a presents the cumulative time spent in individual
computational phases across iterations. Moreover, Figure 2-
b presents the speedup achieved for the same experiments
reported in Figure 2-a. As is clearly shown, the dominant
phase of the execution is update phi pi. The reported total
time for each cluster size is significantly less than the sum
of the execution times of the individual phases. This is
due to the overlapping execution of the two most expensive
phases, namely, update phi pi and mini-batch deployment.
Both of these phases initially gain significant speedup with



Iteration (sub)stages non-pipelined pipelined
draw/deploy mini-batch 45.6 26.2
load π 205 209
update φ 74 74
total 331 241

Table III
STAGES THAT PROFIT FROM THE TWO PIPELINING OPTIMIZATIONS.

COM-FRIENDSTER ON 65 COMPUTE NODES, WITH 12K COMMUNITIES.
TIMES IN MS PER ITERATION.
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Figure 3. Performance effect of varying the number of communities on the
algorithm’s execution time on 64 nodes when disabling or enabling both
pipelining optimizations.

the addition of compute nodes. However, the speedup curve
gradually slows down for larger cluster sizes as the work
granularity of each worker node decreases, limiting their
resource utilization. The time spent in update beta theta
remains relatively constant across cluster sizes as it performs
an insignificant amount of work compared to the synchro-
nization overhead of a collective MPI reduction operation
contained within it.

C. Pipeline efficiency

As discussed in Section III, we implemented pipeline
parallelism at two places in the algorithm. The first is an
inter-process pipeline that overlaps drawing of the mini-
batch at the master’s with update phi at the workers. The
second pipeline overlaps loading of π with the computation
within update pi within each worker.

Table III shows a breakdown of the (sub)stages that are
overlapped by both pipelining optimizations. The left-hand
column has all pipelining disabled, the right-hand column
has pipelining enabled. Within update phi, loading π from
the DKV store is dominant. The pipelining optimization
significantly overlaps loading π both with generation and
deployment of the mini-batch, and with the calculation of
update phi.

Figure 3 presents the execution time of 1024 algorithm
iterations on a 64-node cluster with the pipelines enabled and
disabled. Naturally, increasing the number of communities
causes a proportional increase in execution time. However,
when pipelining is enabled, some of the incurred network
latency is hidden by overlapping it with computation. More-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  5000  10000  15000  20000  25000  30000  35000T
im

e
 p

e
r 

it
e
ra

ti
o
n
 (

m
ill

is
e
c
o
n
d
s
)

Number of Communities (K)

(a) HPC Cloud (16 and 40 cores) vs. 1 DAS5 node (16 cores) using com-DBLP

HPC Cloud 40-cores
HPC Cloud 16-cores

Single DAS5 node 16-cores

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  500  1000  1500  2000  2500  3000  3500T
im

e
 p

e
r 

it
e
ra

ti
o
n
 (

m
ill

is
e
c
o
n
d
s
)

Number of Communities (K)

(b) HPC Cloud (40 cores) vs. 64 DAS5 nodes (64*16 cores) using com-Friendster

HPC Cloud 64 DAS5 nodes

Figure 4. Performance comparison between the distributed implementation
running on DAS5 and the multi-threaded solution on one machine with
40 cores and 1TB of RAM.

over, since both computation time and network latency
increase with larger K, the benefit of pipelining increases.
This can be observed through the widening gap between
both lines depicted in Figure 3. Large cluster configurations
exhibit higher bandwidth demands and are more sensitive to
network latency: given that π accesses are random, a node
in a cluster of size C must fetch (C − 1)/C of all read
requests over the network.

D. Horizontal vs. Vertical Scalability

One of the main drawbacks of designing a distributed
solution for a given algorithm is the inherent complexity of
communication and synchronization. A considerably simpler
approach is developing a multi-threaded version and running
it on a machine with abundant memory and CPU cores. In
such a context, access to all of the algorithm’s state would
be an order of magnitude faster than RDMA. Additionally,
the overhead associated with synchronizing threads is neg-
ligible compared to using MPI primitives. To evaluate the
efficacy of both approaches we used the virtual machine with
40 cores and 1TB of memory at SURFSara’s HPC Cloud
system. By provisioning all 40 cores we ensured that there is
no resource contention from other users. Figure 4 reports the
execution time per algorithm iteration for two experimental
setups. First, Figure 4-a shows the performance of executing
the algorithm on the HPC Cloud system with 40 and 16 cores
compared to a single DAS5 node with 16 cores. This test
uses the com-DBLP data set to enable the use of a large
number of communities without running out of memory. It
is clear from the results that the performance can benefit
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from the additional cores provided by HPC Cloud system.
Further, Figure 4-b tests the performance of the HPC Cloud
system compared to 64 nodes of the DAS5 cluster using the
com-Friendster data set. Clearly, the parallel and distributed
implementation vastly outperforms the single-node multi-
threaded solution. Moreover, the trajectory of both curves
shows a widening gap between them suggesting that the
relative performance difference will increase for larger K.
In conclusion, the overhead of network communication
in the distributed version is more than compensated by
the increasing compute power compared to a single-node
implementation.

E. Cluster Communication Efficiency

Since the distributed algorithm is data-intensive, a key
aspect in improving its performance is to maximize the
utility of the network resources. In Figure 5, we provide
maximum bandwidth numbers for read operations between
one server and one client for a range of payload sizes,
and compare these to the bandwidth achieved by an MPI
roundtrip test, and by qperf [32] which reports the best
achievable performance for Infiniband. We present qperf
bandwidth for both RDMA read and RDMA write opera-
tions; these are quite close, which corroborates the results
from the Herd project for payloads upwards from 256B. The
OpenMPI implementation has an ib-verbs implementation
for Infiniband, hence it has very good performance. The
MPI benchmark requires an interaction between the server
network card and the server host, which increases the latency
and thus lowers the bandwidth significantly. Note that the
comparison is lopsided: qperf and MPI are low-level point-
to-point benchmarks without any DKV store implementation
on top. The performance presented in this Figure is ample
justification for using a low-level RDMA implementation for
the DKV store. The bandwidth achieved by our DKV store
falls short of the qperf performance for packets less than
4KB; this is attributed to additional per-request overhead
for the DKV store. For the largest packet size, the DKV
store performance is hampered by the fact that its values
are spread over a larger memory area, whereas qperf and
MPI always read from the same memory locations. For

packets between 8KB and 512KB, our DKV store achieves
performance very close to qperf.

F. Convergence of Large Datasets

The previous sections focused on the computational per-
formance of the distributed implementation. However, the
algorithm’s throughput does not necessarily indicate how
fast it can converge to a solution. More specifically, it
remains unclear how many iterations are needed for the
algorithm to reach a stable state and terminate. Therefore,
we now shift our focus to the convergence time to assess
the system’s utility. Figure 6 presents the convergence time
of the data sets listed in Table II. The results in sub-figures
a, b and c were obtained by using 65 compute nodes of
DAS5. In Figure 6-a, the number of communities was set to
12K which fully occupied the aggregate memory resources
of all 64 worker nodes since com-Friendster has roughly
65 million vertices. In this case, the algorithm reached a
stable state after 8-10 hours. Next, Figures 6-b and 6-c
present the convergence of com-LiveJournal and com-Orkut
respectively. As the number of vertices in these data sets is
an order of magnitude smaller than com-Friendster, we could
use a larger number of communities to fill up the collective
memory. Naturally, the convergence time was extended as
the complexity of the algorithm increases dramatically with
larger K. However, the system was capable of reporting
results for both in around 60 hours. Figures 6-d, 6-e and
6-f were all configured to use the number of ground-truth
communities associated with their respective data sets, com-
Youtube, com-DBLP and com-Amazon. Since this yields a
much smaller storage requirement, these experiments were
conducted on 13, 21 and 21 cluster nodes respectively.

The results reported in Figure 6 verify that the distributed
implementation of the algorithm is capable of detecting over-
lapping communities within real graphs in reasonable time
given the available compute resources. The time required
to reach convergence may vary depending on a graph’s
properties and the targeted number of communities. To the
best of our knowledge, the data sets used in this study are
the largest publicly available organic graphs.

V. CONCLUSION

The recent advancements of machine learning algorithms
make them ideal candidates to solve complex problems.
However, using these solutions in order to process problems
at scale is still a daunting task. In particular, knowledge of
parallel and distributed computing techniques is necessary
to facilitate the development of such systems and streamline
their execution time.

In this paper, we shared our experience in developing
a highly scalable and efficient solution for a stochastic
gradient Markov chain Monte Carlo algorithm that detects
overlapping communities in graphs. The system design had
to overcome several obstacles in order to achieve high
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Figure 6. Convergence time of 6 different data sets.

performance. Specifically, we discussed how the algorithm
was structured to facilitate its parallelization. Moreover,
we evaluated the efficacy of overlapping computation with
communication to hide latency. Further, we demonstrated the
use of a mixture of MPI and RDMA primitives to speedup
the communication between cluster nodes.

We conducted a thorough empirical evaluation of the
system to study its strong and weak scalability on 65 cluster
nodes using large data sets. Additionally, we assessed the
efficiency of the algorithm’s resource utilization. Finally, a
demonstration of the implementation’s utility was provided
by processing 6 different organic data sets. To the best of our
knowledge, this is the first time that the problem of deducing
overlapping communities has been learned for problems of
such a large scale.
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