A primer on the method of hypergraph containers

Maximilian Wötzel

KdVI General Mathematics Colloquium
Extremal Combinatorics

"Complete disorder is impossible" – Theodore S. Motzkin

How large can an object be before containing some specific (structured) sub-object?
Extremal Combinatorics

How large can an object be before containing some specific (structured) sub-object?

The party theorem:

In any group of six people, either three people mutually know each other or three people mutually don't know each other.*
Extremal Combinatorics

How large can an object be before containing some specific (structured) sub-object?

The party theorem:
In any group of six people, either three people mutually know each other or three people mutually don’t know each other.*
Extremal Combinatorics

How large can an object be before containing some specific (structured) sub-object?

The party theorem:
In any group of six people, either three people mutually know each other or three people mutually don't know each other.*
Extremal Combinatorics

How large can an object be before containing some specific (structured) sub-object?

The party theorem:
In any group of six people, either three people mutually know each other or three people mutually don't know each other.*
Extremal Combinatorics

How large can an object be before containing some specific (structured) sub-object? A graph K_6.

The Party Theorem: In any group of six people, either three people mutually know each other or three people mutually don't know each other.*
Extremal Combinatorics

Abstraction leads to natural follow-up questions:

- For every \(k, r \), does there exist \(n \) s.t. two coloring \(K_n \) gives red \(K_k \) or blue \(K_r \)?

Recall: We just saw that for \(k = r = 3 \), \(n = 6 \) suffices

\(k = r = 4 \Rightarrow n = 18 \)

\(k = r = 5 \) ? \(43 \leq n \leq 48 \)

"a 2-edge coloring of the complete graph \(K_6 \)"
Extremal Combinatorics

Abstraction leads to natural follow-up questions:

- For every k, r, does there exist n s.t. two coloring K_n gives red K_k or blue K_r?
- What about more than two colors?

"a 2-edge coloring of the complete graph $K_6"
Extremal Combinatorics

Abstraction leads to natural follow-up questions:

- For every k, r, does there exist n s.t. two coloring K_n gives red K_k or blue K_r?
- What about more than two colors?
- What about multi-colored objects?

"a 2-edge coloring of the complete graph $K_6"
(Hyper)graphs

- A hypergraph is a pair $\mathcal{H} = (V, E)$
(Hyper)graphs

- A hypergraph is a pair $\mathcal{H} = (V, E)$
- V the set of vertices or nodes
(Hyper)graphs

- A hypergraph is a pair $\mathcal{H} = (V, E)$
- V the set of vertices or nodes
- $E \subseteq 2^V$ the set (system) of (hyper)-edges
 - powerset of V
(Hyper)graphs

• A hypergraph is a pair $\mathcal{H} = (V, E)$

• V the set of vertices or nodes

• $E \subseteq 2^V$ the set (system) of (hyper)-edges

• If $|e| = k \in \mathbb{N}$ for all edges $e \in E$, we call \mathcal{H} k-uniform

usually fixed, but may depend on $|V|$ as well
(Hyper)graphs

- A hypergraph is a pair \(\mathcal{H} = (V, E) \)
- \(V \) the set of vertices or nodes
- \(E \subseteq 2^V \) the set (system) of (hyper)-edges

- If \(|e| = k \in \mathbb{N} \) for all edges \(e \in E \), we call \(\mathcal{H} \) \(k \)-uniform

- A 2-uniform hypergraph is called graph
(Induced) sub-hypergraphs and independent sets

Let $\mathcal{H} = (V, E)$ be a hypergraph.

- A hypergraph $\mathcal{F} = (V', E')$ is a subhypergraph of \mathcal{H} if $V' \subseteq V$ and $E' \subseteq E$.
(Induced) sub-hypergraphs and independent sets

Let $\mathcal{H} = (V, E)$ be a hypergraph.

- A hypergraph $F = (V', E')$ is a subhypergraph of \mathcal{H} if $V' \subseteq V$ and $E' \subseteq E$.

- It is an induced subhypergraph if $E' = 2^{V'} \cap E$; every edge $e \in E$ with $e \subseteq V'$ is in E'.
(Induced) sub-hypergraphs and independent sets

Let \(\mathcal{H} = (V, E) \) be a hypergraph.

- A hypergraph \(\mathcal{F} = (V', E') \) is a subhypergraph of \(\mathcal{H} \) if \(V' \subseteq V \) and \(E' \subseteq E \).
- It is an induced subhypergraph if \(E' = 2^{V'} \cap E \).
- For \(V' \subseteq V \), define \(\mathcal{H}[V'] = (V', 2^{V'} \cap E) \).

the induced subhypergraph on \(V' \)
(Induced) sub-hypergraphs and independent sets

Let $\mathcal{H} = (V, E)$ be a hypergraph.

- A hypergraph $\mathcal{F} = (V', E')$ is a subhypergraph of \mathcal{H} if $V' \subseteq V$ and $E' \subseteq E$.

- It is an induced subhypergraph if $E' = 2^{V'} \cap E$.

- For $V' \subseteq V$, define $\mathcal{H}[V'] = (V', 2^{V'} \cap E)$.

- $I \subseteq V$ is an independent set in \mathcal{H} if $\mathcal{H}[I] = (I, \emptyset)$.

a hypergraph

a graph
a hypergraph

two independent sets

a graph
Questions about independent sets

Given a specific hypergraph \(\mathcal{H} \) (or maybe a family \((\mathcal{H}_n)_n\))

- What is the largest size of an independent set? (Called the independence number \(\alpha(\mathcal{H}) \))
Questions about independent sets

Given a specific hypergraph H (or maybe a family $(H_n)_n$)

- What is the largest size of an independent set?

- How many independent sets does H have?

NB: Trivial lower bound: $2^{\alpha(H)}$

Often not far from the truth!
Questions about independent sets

Given a specific hypergraph H (or maybe a family $(H_n)_n$)

- What is the largest size of an independent set?

- How many independent sets does H have?

- What is the structure of a typical independent set?

given one uniformly at random
Motivation

Why do we care? Hypergraphs naturally allow encoding of "forbidden substructure" problems: complete graph

- Triangle-free graphs -
 - vertices: edges of \(K_n \)
 - hyperedges: "triangles" \(\{i,j,k\} \), \(\{i,j,k\} \), \(\{i,j,k\} \), \(\{i,j,k\} \)
Motivation

Why do we care? Hypergraphs naturally allow encoding of "forbidden substructure" problems:

- Triangle-free graphs

Vertices: edges of \(K_n \) \{12, 13, 23\}

Hyperedges: "triangles" \{123, 134, 243\}

The hypergraph encoding triangles in \(K_4 \)
Motivation

Why do we care? Hypergraphs naturally allow encoding of "forbidden substructure" problems:

- Triangle-free graphs - hyperedges: "triangles" \{i,j,k\} vertices: edges of \(K_n\) \{i<j\}
- \(k\)-term arithmetic progressions - hyperedges: \(\{x, x + d, \ldots, x + (k-1)d\}\) vertices: \(\{x\} = \{1, \ldots, n\}\)
Motivation

Why do we care? Hypergraphs naturally allow encoding of "forbidden substructure" problems:

- Triangle-free graphs — hyperedges: "triangles" \{i<j<k\}, \{i<j,k\}, \{i<k,j\}
- \(k\)-term arithmetic progressions — hyperedges: \{x, x+d, ..., x+(k-1)d\}

\(\Rightarrow\) Classical results of Mantel (3's) and Szemerédi (3-APs) are about independence number \(\Delta(H)\) of some hypergraph \(H\).
But...

Do we gain anything by encoding a problem as independent sets in hypergraphs?
The method of hypergraph containers

Idea: If the edges of a hypergraph $\mathcal{H}=(V,E)$ are distributed "evenly enough", then there exists a small family \mathcal{C} of subsets $C \subseteq V$ ("containers") of \mathcal{H} such that:
The method of hypergraph containers

Idea: If the edges of a hypergraph $\mathcal{H} = (V, E)$ are distributed "evenly enough", then there exists a small family \mathcal{C} of subsets $C \subseteq V$ ("containers") of \mathcal{H} such that:

(i) Every independent set I of \mathcal{H} is contained in some container $C \in \mathcal{C}$.
The method of hypergraph containers

Idea: If the edges of a hypergraph $\mathcal{H}=(V,E)$ are distributed "evenly enough", then there exists a small family \mathcal{C} of subsets $C \subseteq V$ ("containers") of \mathcal{H} such that:

(i) Every independent set I of \mathcal{H} is contained in some container $C \in \mathcal{C}$.

(ii) For every $C \in \mathcal{C}$, the induced subhypergraph $\mathcal{H}[C]$ has few edges.
The method of hypergraph containers

How does this help with e.g. counting?
The method of hypergraph containers

How does this help with e.g. counting?

We want to count independent sets by union bounding.
The method of hypergraph containers

• How does this help with e.g. counting?
• We want to count independent sets by union bounding

\# \{ \text{ind. sets of } \mathcal{H} \} = \sum_{\mathcal{E} \in \mathcal{E}} \# \{ \text{ind. sets of } \mathcal{H} \text{ in } \mathcal{E} \}
The method of hypergraph containers

• How does this help with e.g. counting?
• We want to count independent sets by union bounding \(\Rightarrow \)
 \[\# \{ \text{ind. sets of } \mathcal{A} \} = \sum_{C \in \mathcal{E}} \# \{ \text{ind. sets of } \mathcal{A} \text{ in } C \} \]
• Extreme (unhelpful) choices are \(\mathcal{E} = \{ \cup (\emptyset, \emptyset) \} \)
 and \(\mathcal{E} = \{ I \in V : I \ \text{ind.} \} \)
 \[\uparrow \text{ no control over summands} \]
 \[\uparrow \text{ no control over summands} \]
The method of hypergraph containers

• How does this help with e.g. counting?
• We want to count independent sets by union bounding

\[\# \{ \text{ind. sets of } \mathcal{H} \} = \sum_{C \in \mathcal{E}} \# \{ \text{ind. sets of } \mathcal{X} \text{ in } C \} \]

• Extreme (unhelpful) choices are \(E = \{ U(\mathcal{A}\mathcal{E}) \} \) and \(E = \{ I \in V : I \text{ ind.} \} \)
• Our containers represent sweet spot!
The method of hypergraph containers

- For $A \subseteq V(\mathcal{X})$, define $d_{\mathcal{X}}(A) = \# \text{ edges } F \in E(\mathcal{X}) \text{ with } A \subseteq F$
- For $l \in \mathbb{N}$, define $\Delta_l(\mathcal{X}) = \max \{ d_{\mathcal{X}}(A) : A \subseteq V(\mathcal{X}), |A| = l \}$

$d_{\mathcal{X}}$ the degree

Δ_l the maximum l-degree
The method of hypergraph containers

- For $A \subseteq V(\mathcal{H})$, define $d_{\mathcal{H}}(A) = \# \text{edges } F \in E(\mathcal{H})$ with $A \subseteq F$
- For $\ell \in \mathbb{N}$, def $\Delta_{\ell}(\mathcal{H}) = \max \{ d_{\mathcal{H}}(A) : A \subseteq V(\mathcal{H}), |A| = \ell \}$

The container lemma: Let $k \in \mathbb{N}$ and $\delta = 2^{-\kappa(k+1)}$. If \mathcal{H} is k-uniform that satisfies

$$\Delta_{\ell} \leq \left(\frac{b}{\nu(\mathcal{H})} \right)^{2-\ell} \frac{e(\mathcal{H})}{r}$$

for some $b, r \in \mathbb{N}$ and all $\ell \in \{1, \ldots, k\}$

NB: $e(\mathcal{H}) = \# \text{edges}$

$v(\mathcal{H}) = \# \text{vertices}$
The method of hypergraph containers

- For $A \subseteq V(\mathcal{H})$, define $d_{\mathcal{H}}(A) = \# \text{ edges } F \in E(\mathcal{H}) \text{ with } A \subseteq F$

- For $l \in \mathbb{N}$, define $\Delta_l(\mathcal{H}) = \max \{ d_{\mathcal{H}}(A) : A \subseteq V(\mathcal{H}), |A| = l^2 \}$

The container lemma: Let $k \in \mathbb{N}$ and $\delta = 2^{-k(k+1)}$. If \mathcal{H} is k-uniform that satisfies

$$\Delta_l = \left(\frac{\delta}{u(\mathcal{H})} \right)^{l-1} \frac{e(\mathcal{H})}{r}$$

for some $b, r \in \mathbb{N}$ and all $l \in \{1, \ldots, k\}$, then there exists $C \subseteq 2^{V(\mathcal{H})}$ and $f : 2^{V(\mathcal{H})} \rightarrow C$ s.t.

(i) for every ind. set I of \mathcal{H}, exists $S \subseteq I \subseteq f(S)$ with $|S| \leq (k-1)b$
The method of hypergraph containers

- For \(A \subseteq V(H) \), define \(d_{\mathcal{H}}(A) = \# \text{ edges } F \in E(H) \text{ with } A \subseteq F \).
- For \(k \in \mathbb{N} \), define \(\Delta_k(H) = \max \{ d_{\mathcal{H}}(A) : A \subseteq V(H), |A| = k^2 \} \).

The containers lemma: Let \(k \in \mathbb{N} \) and \(\delta = 2^{-k(k+1)} \). If \(H \) is \(k \)-uniform that satisfies
\[
\Delta_k \leq \left(\frac{b}{\binom{\mathbb{N}}{k+1}} \right)^{k-1} \frac{e(H)}{r}
\]
for some \(b, r \in \mathbb{N} \) and all \(k \in \{1, \ldots, k^2 \} \), then there exists \(C \subseteq 2^{V(H)} \) and \(f : 2^{V(H)} \rightarrow C \) s.t.

(i) for every ind. set \(I \) of \(H \), exists \(S \subseteq I \subseteq f(S) \) with \(|S| \leq (k-1)b \).
(ii) \(|C| \leq 2^{V(H)} - 5r \) for every \(C \in C \).
Example triangle-free graphs: The container family

Goal: Obtain containers for n-vertex 4-free graphs

Recall: Our hypergraph family H_n has vertices $\{i,j\}$ with $1 \leq i < j \leq n$ and edges $\{\{i,j\}, \{i,k\}, \{j,k\}\}$ with $1 \leq i, j, k \leq n$.
Example triangle-free graphs: The container family

Goal: Obtain containers for n-vertex Δ-free graphs

We see:

1. $\Delta_1(\mathcal{H}_n) = n - 2 = \frac{3e(\mathcal{H})}{\nu(\mathcal{H})}$
2. $\Delta_2(\mathcal{H}_n) = \Delta_3(\mathcal{H}) = 1$

- Fixing a single vertex of \mathcal{H}_n:
 - edge of K_n
- Fixing two vertices that do not lie in a common hyperedge:
- Two vertices that achieve the max 2-degree:
Example triangle-free graphs: The container family

Goal: Obtain containers for n-vertex 4-free graphs

We see:

i) $\Delta_1(\mathcal{H}_n) = n - 2 = \frac{3e(\mathcal{H})}{v(\mathcal{H})}$

ii) $\Delta_2(\mathcal{H}_n) = \Delta_3(\mathcal{H}) = 1$

\Rightarrow Can choose $\tau = \frac{v(\mathcal{H}_n)}{3}$ and $b = \frac{v(\mathcal{H})^{3/2}}{\sqrt{3e(\mathcal{H})}}$

upper bound from

$\Delta_1 \leq \frac{e(\mathcal{H})}{\tau}$

lower bound from

$\Delta_3 \leq \frac{b^2}{v} \cdot \frac{e}{\tau}$ when using

$\tau = \frac{v}{3}$.
Example triangle-free graphs: The container family

Goal: Obtain containers for n-vertex Δ-free graphs

We see:

i) $\Delta_1(\mathcal{H}_n) = n - 2 = \frac{3e(\mathcal{H})}{\nu(\mathcal{H})}$

ii) $\Delta_2(\mathcal{H}_n) = \Delta_3(\mathcal{H}) = 1$

\Rightarrow Can choose $r = \frac{\nu(\mathcal{H}_n)}{3}$ and $b = \frac{\nu(\mathcal{H})^{3/2}}{\sqrt{3e(\mathcal{H})}}$

Result:

- "fingerprints" of size $\leq \sqrt{\frac{4\nu^3}{3e}} \approx n^{3/2}$
- containers have size $\leq (1 - \frac{\Delta}{3})\nu$

Problem: $\mathcal{H}[C_3]$ might still contain many edges
Example triangle-free graphs: The container family

Solution: As long as $|E[C]|$ has more than $\varepsilon e(|X|)$ edges, re-apply lemma with $r' = \varepsilon r$!
Example triangle-free graphs: The container family

Solution: As long as \(V[C] \) has more than \(\varepsilon e(H) \) edges, re-apply lemma with \(r' = \varepsilon r \). Works, since

\[
\Delta_e(V[C]) \leq \Delta_e(H) \leq \left(\frac{b}{v(H)} \right)^{l-1} \frac{\varepsilon e(H)}{\varepsilon r} = \frac{e(H)}{r}
\]

\[
\leq \left(\frac{b}{v(V[C])} \right)^{l-1} \cdot \frac{e(H)}{r'}
\]

we use \(e(V[C]) \geq \varepsilon e(H) \)

and \(v(V) \geq v(V[C]) \)
Example triangle-free graphs: The container family

Solution: As long as $\mathcal{H}[C]$ has more than $\varepsilon e(\mathcal{H})$ edges, re-apply lemma with $\tau' = \varepsilon r$. Works, since

$$\Delta_e(\mathcal{H}[C]) \leq \Delta_e(\mathcal{H}) \leq \left(\frac{b}{v(\mathcal{H})} \right)^{l-1} \frac{\varepsilon e(\mathcal{H})}{r'}$$

$$\leq \left(\frac{b}{v(\mathcal{H}[C])} \right)^{l-1} \cdot \frac{e(\mathcal{H}[C])}{r'}$$

"containers of containers"

NB: Independent sets of \mathcal{H} stay independent

- # iterations at most $\frac{3}{5\varepsilon} \Rightarrow$ find C has size

$$\exp(O_{\varepsilon}(n^{3/2} \log n))$$
Example triangle-free graphs: The container family

End result, phrased as graphs:

A collection \mathcal{E} of n-vertex graphs and an $f : \mathcal{G}_n = \{ \text{graphs on } n \text{ vertices} \} \rightarrow \mathcal{E}$ s.t.
Example triangle-free graphs: The container family

End result, phrased as graphs:

A collection \mathcal{E} of n-vertex graphs and an $f: G_n = \{\text{graphs on } n \text{ vertices}\} \rightarrow \mathcal{E}$ s.t.

- For every Δ-free n-vertex G, ex. $S \in G_n$ with $e(S) \leq n^{3/2}$ and $S \subseteq G \subseteq f(S)$.
Example triangle-free graphs: The container family

End result, phrased as graphs:

A collection \mathcal{C} of n-vertex graphs and an
function $f : \mathcal{G}_n = \{\text{graphs on } n \text{ vertices}\} \rightarrow \mathcal{C}$ s.t.

- For every Δ-free n-vertex G, each $S \subseteq \mathcal{G}_n$ with $e(S) \leq n^{3/2}$,
and $S \subseteq G \subseteq f(S)$.

- Every graph $C \in \mathcal{C}$ has less than $\Omega(n^2)$ triangles.
Example triangle-free graphs: The container family

End result, phrased as graphs:

A collection \mathcal{C} of n-vertex graphs and an $f: \mathcal{G}_n = \{\text{graphs on } n \text{ vertices}\} \to \mathcal{C}$ s.t.

1. For every Δ-free n-vertex G, ex. $S \in \mathcal{G}_n$ with $e(S) \leq n^{3/2}$ and $S \leq G \leq f(S)$.

2. Every graph $C \in \mathcal{C}$ has less than $\varepsilon \binom{n}{3} \approx \frac{\varepsilon}{6} n^3$ triangles.

3. $|\mathcal{C}| \leq \exp\left(c \cdot n^{3/2} \log n \right)$
Example triangle-free graphs: Counting

Goal: Show that there are \(2^{n^2/4 + o(n^2)} \) \(\Delta \)-free graphs on \(n \) vertices.
Example triangle-free graphs: Counting

Goal: Show that there are $2^{n^2/4 + o(n^2)}$ Δ-free graphs on n vertices.

Would be optimal-ish:

- the complete bipartite graph $K_{n/2,n/2}$ with $\frac{n^2}{4}$ edges, each of the $2^{n^2/4}$ subgraphs is Δ-free.
Example triangle-free graphs: Counting

Goal: Show that there are $2^{n^2/4 + o(n^2)}$ 1-free graphs on n vertices.

Mantel (1907): Every triangle-free graph on n vertices has $\leq \frac{n^2}{4}$ edges.

So $\Delta_n = \frac{n^2}{4}$ \Rightarrow we in fact show $2^{(1+o(1))\Delta_n}$
Example triangle-free graphs: Counting

Goal: Show that there are \(2^{n^2/4 + o(n^2)}\) triangle-free graphs on \(n\) vertices.

Mantel (1907): Every triangle-free graph on \(n\) vertices has \(\leq \frac{n^2}{4}\) edges.

Apply Mantel to small subgraphs to get supersaturation:
For every \(\delta > 0\) ex. \(\epsilon > 0\) s.t. any graph on \(\frac{n}{4} + \delta n^2\) edges contains \(\geq \epsilon n^3\) triangles.
Example triangle-free graphs: Counting

Goal: Show that there are \(2^{n^2/4 + o(n^2)} \) \(\Delta \)-free graphs on \(n \) vertices.

Mantel (1907): Every triangle-free graph on \(n \) vertices has \(\leq \frac{n^2}{4} \) edges.

Apply Mantel to small subgraphs to get supersaturation:
For every \(\delta > 0 \) ex. \(\varepsilon > 0 \) s.t. any graph on \(\frac{n^2}{4} + \delta n^2 \) edges contains \(\geq \varepsilon n^3 \) triangles.

We combine this with our container family.
Example triangle-free graphs: Counting

For any \(\delta > 0 \), construct container family for the supercsturation \(\varepsilon(\delta) \)
Example triangle-free graphs: Counting

For any $\delta > 0$, construct container family for the supersaturation $\varepsilon(\delta)$

\Rightarrow containers have $\leq 3n^3$ triangles

(by construction)
Example triangle-free graphs: Counting

For any $\delta > 0$, construct container family for the
supercsaturation $c(\delta)$

\Rightarrow containers have $\leq 3n^3$ triangles

$\Rightarrow \leq \left(\frac{1}{\delta} + 8 \right)n^2$ edges

(by supercsaturation)
Example triangle-free graphs: Counting

For any $\delta > 0$, construct container family for the supercritical $\varepsilon(\delta)$

n containers have $\leq \varepsilon n^3$ triangles

$\implies (1/n + \delta)n^2$ edges

\implies The number of Δ-free graphs on n vertices is

$\leq \sum_{C \in \mathcal{C}} 2^{e(C)}$ (Every Δ-free graph in some container)
Example triangle-free graphs: Counting

For any $\delta > 0$, construct container family for the superconcentration $\delta(n)$

\Rightarrow containers have $\leq 3n^3$ triangles

$\Rightarrow < (\frac{1}{4} + \delta) n^2$ edges

\Rightarrow The number of triangle-free graphs on n vertices is

$$\leq \sum_{C \subseteq E} 2^{e(C)} \leq |E| \cdot 2^{(\frac{1}{4} + \delta) n^2} \leq \exp(8n^{3/2} \log n) \cdot 2^{(\frac{1}{4} + \delta) n^2}$$

by construction
Example triangle-free graphs: Counting

For any $\delta > 0$, construct a container family for the superseturation $\varepsilon(\delta)$

$\varepsilon(n^3)$ containers have $\leq \varepsilon n^3$ triangles

$\Rightarrow \leq (\frac{1}{4} + \delta) n^2$ edges

\Rightarrow The number of Δ-free graphs on n vertices is

$$\leq \sum_{C \in \mathcal{C}} 2^{e(C)} \leq |E| \cdot 2^{(\frac{1}{4} + \delta)n^2} \leq \exp(\delta n^{3/2} \log n) \cdot 2^{(\frac{1}{4} + \delta)n^2}$$

$$= 2^{\frac{n^2}{4} + \delta n^2 + O(n^{3/2} \log n)}$$
Example triangle-free graphs: Typical structure

- Stability (Erdős-Simonovits/Füredi): \(\forall \delta > 0 \exists \varepsilon > 0\) s.t. any \(n\)-vertex graph with \(\geq \left(\frac{1}{2} - \varepsilon\right)\binom{n}{2}\) edges and \(<\varepsilon n^2\) 3's can be made bipartite by removing \(\leq \delta n^2\) edges.
Example triangle-free graphs: Typical structure

• Stability (Erdős-Simonovits/Füredi): ∀δ > 0 ∃ε > 0 s.t.
 any n-vertex graph with \(\geq (\frac{1}{2} - \varepsilon) \binom{n}{2} \) edges and \(< \varepsilon n^3 \) Δ's
 can be made bipartite by removing \(\leq \delta n^2 \) edges.

 "\(\delta n^2 \)-close to being bipartite"

Idea: Few triangles and edge number just under
 maximum for Δ-free \(\to \) close to extremal
 construction
Example triangle-free graphs: Typical structure

- Stability (Erdős-Simonovits/Füredi): \(\forall \delta > 0 \exists \epsilon > 0 \) s.t. any \(n \)-vertex graph with \(\geq \left(\frac{\epsilon}{2} \right) \binom{n}{2} \) edges and \(< \epsilon n^2 \) 3's can be made bipartite by removing \(\leq \delta n^2 \) edges.

- We will show: For every \(\alpha > 0 \) \(C > 0 \) s.t. almost all 3-free graphs with \(n \) vertices and \(m \geq Cn^{3/2} \log n \) edges is am-close to being bipartite.
Example triangle-free graphs: Typical structure

- **Stability (Erdős-Simonovits/Füredi):** \(\forall \delta > 0 \exists \varepsilon > 0 \) s.t. any \(n \)-vertex graph with \(\geq \left(\frac{1}{2} - \varepsilon \right) \binom{n}{2} \) edges and \(< \varepsilon n^2 \) \(\Delta \)'s can be made bipartite by removing \(\leq \delta n^2 \) edges.

- We will show: For every \(\alpha > 0 \exists \varepsilon > 0 \) s.t. almost all \(\Delta \)-free graphs with \(n \) vertices and \(m \geq C n^{3/2} \log n \) edges is \(\alpha m \)-close to being bipartite.

Idea: Count exceptions ("bad graphs") and compare to \(\binom{n^2/4}{n/2} \).

\[
\begin{align*}
\frac{n}{2} \leq \text{ any of the } \binom{n^2/4}{n/2} \text{ subgraphs is good!}
\end{align*}
\]
Example triangle-free graphs: Typical structure

How to count bad graphs? Containers are n-vertex graphs with $< 3n^2$ 3's? (After constructing them with 3 coming from stability w.r.t. some $\delta(d)$)
Example triangle-free graphs: Typical structure

How to count bad graphs? Containers are n-vertex graphs with $< 3n^3$ A's!

Stability \Rightarrow either (a) $< \left(\frac{1}{2} - \epsilon \right) \binom{n}{2}$ edges

or (b) δn^2-close to bipartite (structure)
Example triangle-free graphs: Typical structure

How to count bad graphs? Containers are n-vertex graphs with $<3n^3$ Δ's!

Stability \Rightarrow either (a) $<\left(\frac{1}{2}-\epsilon\right)n^2$ edges

or (b) δn^2-close to bipartite (structure)

Idea now: * few edges \Rightarrow few subgraphs with m edges (good or bad)

* containers have structure \Rightarrow few graphs inside them without
Example triangle-free graphs: Typical structure

How to count bad graphs? Containers are n-vertex graphs with $<3n^3$ Δ's?

Stability \Rightarrow either (a) $< (1/2 - \varepsilon)(n^3/2)$ edges

or (b) δn^2-close to bipartite (structure)

$\binom{n^2}{2} \leq (1 - \varepsilon)^m \binom{n^2/4}{m} \leq \exp\left(-\frac{\varepsilon}{2} m\right) \binom{n^2/4}{m}$

\[\text{NB: This is for a single container of type } a) \]
Example triangle-free graphs: Typical structure

How to count bad graphs? Containers are \(n \)-vertex graphs with \(< 3n^3 \ \Delta's \)!

Stability \(\Rightarrow \) either (a) \(< (\frac{1}{2} - \varepsilon) \binom{n}{2} \) edges

\(\text{or (b) } \delta n^2 \text{-close to bipartite (structure)} \)

\[
(a) \quad \binom{\frac{1}{2} - \varepsilon}{m} \leq (1 - \frac{\varepsilon}{2})^m \binom{n^2/4}{m} \leq \exp\left(-\frac{\varepsilon}{2}m\right) \binom{n^2/4}{m}
\]

For (b): graph bad \(\Rightarrow \) \(> \delta m \) in the \(\leq \delta n^2 \) bad edges!

\(\text{(b) } \delta n^2 \binom{\frac{1}{2} + \delta}{(n^2 - \Delta m)} \binom{n^2}{(n-\Delta) m} \) \(\geq \) A "bad graph" needs to have \(\geq \delta m \) of its edges in the \(\leq \delta n^2 \) bad edges
Example triangle-free graphs: Typical structure

How to count bad graphs? Containers are n-vertex graphs with $\leq 3n^2$ 3's!

Stability \Rightarrow either

(a) $\leq \binom{\frac{1}{2} - \epsilon}{2} n^2$ edges

or (b) δn^2-close to bipartite (structure)

\[
\binom{\left(\frac{1}{2} - \epsilon\right)n^2}{m} \leq \left(1 - \frac{\epsilon}{2}\right)^m \left(\frac{n^2}{4}\right) \leq \exp\left(-\frac{\epsilon}{2} m\right) \left(\frac{n^2}{4}\right)
\]

For (b): graph bad $\Rightarrow 2dm$ in the $\leq \delta n^2$ bad edges!

(b) $\frac{\delta n^2}{dm} \binom{\left(\frac{1}{4} + \delta\right)n^2}{(1 - \epsilon)n^2} \leq \left(\frac{\left(\frac{1}{4} + \delta\right)n^2}{m - dm}\right) \cdot \exp\left(-C_d m\right) \left(\frac{n^2}{4}\right) \left(\frac{\left(\frac{1}{4} + \delta\right)n^2}{m}\right) \leq \exp\left(-C_d m\right) \left(\frac{n^2}{4}\right)$
Example triangle-free graphs: Typical structure

So any single type (a) or (b) container results in $\leq \exp(-C_n m) \left(\frac{n^2}{4} \right)$ bad graphs.
Example triangle-free graphs: Typical structure

So any single type (a) or (b) container results in \(\leq \exp(-C_d m) \binom{n^2/4}{m} \) bad graphs

\[\sim |E| = \exp(O(n^{3/2} \log n)) \rightarrow \text{can just union bound and still have } \leq \exp(-D(m)) \binom{n^2/4}{m} \text{ bad graphs!} \]
Example triangle-free graphs: Typical structure

So any single type (a) or (b) container results in \(\leq \exp(-C_n m) \binom{n^2/4}{m} \) bad graphs

\[\sim |E| = \exp(O(n^{3/2} \log n)) \rightarrow \text{can just union bound and still have} \leq \exp(-\Delta(m)) \binom{n^2/4}{m} \text{ bad graphs!} \]

Negligible when compared to \(\binom{n^2/4}{m} \)!

LB on good graphs
Forbidden induced substructures

- Studying some questions for forbidden induced subgraphs also possible \(\Rightarrow \) vertices of \(\mathcal{E} \) will be pairs from \(E(K_n) \times \{0,1\} \) indicates whether we (don't) want an edge.
Forbidden induced substructures

- Studying same questions for forbidden induced subgraphs also possible \(\rightsquigarrow \) vertices of \(\mathcal{I} \) will be pairs from \(E(K_n) \times \{0, 1\} \)

- Problem: forgets structure (treats a graph \(F \) as a complete graph on \(\nu(F) \) vertices)
Forbidden induced substructures

• Studying same questions for forbidden induced subgraphs also possible \(\Rightarrow \) vertices of \(\mathcal{F} \) will be pairs from \(E(K_n) \times \{0, 1\} \)

• Problem: forgets structure

• Solution: Asymmetric (bipartite) container lemma (Morris-Samotij-Saxton)

Obtain typical structure of "induced-C_4-free" graphs \(\Rightarrow \) no \(\square \)
Forbidden induced substructures

- Studying same questions for forbidden induced subgraphs also possible \(\rightarrow \) vertices of \(\mathcal{H} \) will be pairs from \(E(K_n) \times \{0,1\} \)

- Problem: forgets structure

- Solution: Asymmetric (bipartite) container lemma (Morris-Samotij-Saxton)

- Generalized to multi-partite by Campos-Coulson-Serra-W.

How far can this be pushed?
THANK YOU!