The structure of Sidon set systems

Max Wötzel

University of Amsterdam

European Conference on Combinatorics, Graph Theory and Applications 2023

August 28th 2023
Sidon sets

Sidon sets
- Classical objects of study in additive number theory
- Idea: sets with little additive structure
Sidon sets

- Classical objects of study in additive number theory
- **Idea:** sets with little additive structure

Definition (B_h-set)

For a positive integer h, a (finite) subset $A \subset G$ of an abelian group G is called B_h-set if for any $a_1, \ldots, a_{2h} \in A$ it holds that

$$a_1 + \cdots + a_h = a_{h+1} + \cdots + a_{2h} \iff \{a_1, \ldots, a_h\} = \{a_{h+1}, \ldots, a_{2h}\}$$

as multisets.

A B_2-set is also called **Sidon set**.
This talk: interested in a generalization to set systems (families).

Operation: the sumset $A + B = \{a + b : a \in A, b \in B\}$ of two sets A and B.
This talk: interested in a generalization to set systems (families).

Operation: the sumset $A + B = \{a + b : a \in A, b \in B\}$ of two sets A and B.

Definition (B_h-system)

For a positive integer h, a family $\mathcal{F} \subset 2^G$ of subsets of an abelian group G is called B_h-system if for any $A_1, \ldots, A_{2h} \in \mathcal{F}$ it holds that

$$A_1 + \cdots + A_h = A_{h+1} + \cdots + A_{2h} \iff \{A_1, \ldots, A_h\} = \{A_{h+1}, \ldots, A_{2h}\}$$

as multisets.

A B_2-system is also called Sidon system.
Sidon systems

This talk: interested in a generalization to set systems (families).

Operation: the sumset $A + B = \{a + b : a \in A, b \in B\}$ of two sets A and B.

Definition (B_h-system)

For a positive integer h, a family $\mathcal{F} \subset 2^G$ of subsets of an abelian group G is called B_h-system if for any $A_1, \ldots, A_{2h} \in \mathcal{F}$ it holds that

$$A_1 + \cdots + A_h = A_{h+1} + \cdots + A_{2h} \iff \{A_1, \ldots, A_h\} = \{A_{h+1}, \ldots, A_{2h}\}$$

as multisets.

A B_2-system is also called *Sidon system*.

Note: Generalization, since a B_h-system consisting of singleton sets "is" exactly a B_h-set.
Previous results – bounds on Sidon systems

Today: Focus on the question: "How large can a Sidon set (system) be?"

Parametrization: $F_{k,h}(n)$ the largest size of a B_h-system in $\binom{[n]}{k}$, i.e. k-element subsets of $[n]$. For $h = 2$ (Sidon systems) we omit the h-subscript.
Previous results – bounds on Sidon systems

Today: Focus on the question: "How large can a Sidon set (system) be?"

Parametrization: $F_{k,h}(n)$ the largest size of a B_h-system in $\binom{[n]}{k}$, i.e. k-element subsets of $[n]$. For $h = 2$ (Sidon systems) we omit the h-subscript.

Theorem (Erdős, Turán (1941), Bose (1942), Ruzsa (1993), Singer (1938))

\[
F_1(n) = (1 \pm o(1)) \sqrt{n}.
\]
Previous results – bounds on Sidon systems

Today: Focus on the question: "How large can a Sidon set (system) be?"

Parametrization: $F_{k,h}(n)$ the largest size of a B_h-system in $\binom{[n]}{k}$, i.e. k-element subsets of $[n]$. For $h = 2$ (Sidon systems) we omit the h-subscript.

Theorem (Erdős, Turán (1941), Bose (1942), Ruzsa (1993), Singer (1938))

\[
F_1(n) = (1 \pm o(1)) \sqrt{n}.
\]

Theorem (Cilleruelo, Serra, W. (2020))

Let $n \geq k \geq 2$ be integers. Then there exists a constant C_k such that

\[
C_k n^{k-1} \leq F_k(n) \leq \binom{n-1}{k-1} + n - k.
\]
Previous results – bounds on Sidon systems

Today: Focus on the question: "How large can a Sidon set (system) be?"

Parametrization: $F_{k,h}(n)$ the largest size of a B_h-system in $\binom{[n]}{k}$, i.e. k-element subsets of $[n]$. For $h = 2$ (Sidon systems) we omit the h-subscript.

Theorem (Erdős, Turán (1941), Bose (1942), Ruzsa (1993), Singer (1938))

$$F_1(n) = (1 \pm o(1)) \sqrt{n}.$$

Theorem (Cilleruelo, Serra, W. (2020))

Let $n \geq k \geq 2$ be integers. Then there exists a constant C_k such that

$$C_k n^{k-1} \leq F_k(n) \leq \binom{n-1}{k-1} + n - k.$$

- Actually showed UB sharp for $k = 2$ and asymptotically correct for $k = 3$.

M. Wötz (UvA)
Previous results – bounds on Sidon systems

Today: Focus on the question: "How large can a Sidon set (system) be?"

Parametrization: \(F_{k,h}(n) \) the largest size of a \(B_h \)-system in \(\binom{[n]}{k} \), i.e. \(k \)-element subsets of \([n]\). For \(h = 2 \) (Sidon systems) we omit the \(h \)-subscript.

Theorem (Erdős, Turán (1941), Bose (1942), Ruzsa (1993), Singer (1938))

\[F_1(n) = (1 \pm o(1)) \sqrt{n}. \]

Theorem (Cilleruelo, Serra, W. (2020))

Let \(n \geq k \geq 2 \) be integers. Then there exists a constant \(C_k \) such that

\[C_k n^{k-1} \leq F_k(n) \leq \binom{n-1}{k-1} + n - k. \]

- Actually showed UB sharp for \(k = 2 \) and asymptotically correct for \(k = 3 \).
- Also determined up to which size a *typical* family of \(k \)-subsets of \([n]\) will be a Sidon system.
Previous results – bounds on Sidon systems

Today: Focus on the question: "How large can a Sidon set (system) be?"

Parametrization: $F_{k,h}(n)$ the largest size of a B_h-system in $\binom{[n]}{k}$, i.e. k-element subsets of $[n]$. For $h = 2$ (Sidon systems) we omit the h-subscript.

Theorem (Erdős, Turán (1941), Bose (1942), Ruzsa (1993), Singer (1938))

$F_1(n) = (1 \pm o(1)) \sqrt{n}$.

Theorem (Cilleruelo, Serra, W. (2020))

Let $n \geq k \geq 2$ be integers. Then there exists a constant C_k such that

$$C_k n^{k-1} \leq F_k(n) \leq \binom{n-1}{k-1} + n - k.$$

- Actually showed UB sharp for $k = 2$ and asymptotically correct for $k = 3$.
- Also determined up to which size a typical family of k-subsets of $[n]$ will be a Sidon system.
- **Remark:** $k = 1$ and $k \geq 2$ cases exhibit a gap (\sqrt{n} vs n^{k-1}). Disappears if we allow $g \geq 2$ representations!
Main result

We (asymptotically) close the gap.

Theorem

Let $n, k, h \geq 2$ be integers. Then $F_{k,h}(n) = (1 \pm o(1))\binom{n}{k-1}$.

Remarks: Also prove a result about largest B_h-system in binomial random subset of $\binom{n}{k}$. Both statements are straightforward consequences of a structural result.
Main result

We (asymptotically) close the gap.

Theorem

Let \(n, k, h \geq 2 \) be integers. Then \(F_{k,h}(n) = (1 \pm o(1)) \binom{n}{k-1} \).

Remarks:

- Also prove a result about largest \(B_h \)-system in binomial random subset of \(\binom{[n]}{k} \).
We (asymptotically) close the gap.

Theorem

Let $n, k, h \geq 2$ be integers. Then $F_{k, h}(n) = (1 \pm o(1))\left(\begin{array}{c} n \\ k-1 \end{array}\right)$.

Remarks:

- Also prove a result about largest B_h-system in binomial random subset of $\left(\begin{array}{c} n \\ k \end{array}\right)$.
- Both statements are straight-forward consequences of a structural result.
Main structural result

Recall: $F_k(n) \leq \binom{n-1}{k-1} + n - k$. Proof idea:
Main structural result

Recall: $F_k(n) \leq \binom{n-1}{k-1} + n - k$. **Proof idea:**

- Partition sets in $\binom{[n]}{k}$ into classes of translates of k-sets in $\{0\} \cup [n - 1]$ that contain 0.
Main structural result

Recall: $F_k(n) \leq \binom{n-1}{k-1} + n - k$. **Proof idea:**

- Partition sets in $\binom{[n]}{k}$ into classes of translates of k-sets in $\{0\} \cup [n - 1]$ that contain 0.
- **Observation I:** Any positive integer can appear as a difference of translation elements for at most one class.
Main structural result

Recall: \(F_k(n) \leq \binom{n-1}{k-1} + n - k \). **Proof idea:**

- Partition sets in \(\binom{[n]}{k} \) into classes of translates of \(k \)-sets in \(\{0\} \cup [n - 1] \) that contain 0.
- **Observation I:** Any positive integer can appear as a difference of translation elements for at most one class.
- **Observation II:** The largest possible difference is \(n - k \).
Main structural result

Recall: $F_k(n) \leq \binom{n-1}{k-1} + n - k$. **Proof idea:**

- Partition sets in $\binom{[n]}{k}$ into classes of translates of k-sets in $\{0\} \cup [n - 1]$ that contain 0.
- **Observation I:** Any positive integer can appear as a difference of translation elements for at most one class.
- **Observation II:** The largest possible difference is $n - k$.

Our main result establishes the other direction.
Main structural result

Recall: $F_k(n) \leq \binom{n-1}{k-1} + n - k$. **Proof idea:**

- Partition sets in $\binom{[n]}{k}$ into classes of translates of k-sets in $\{0\} \cup [n - 1]$ that contain 0.
- **Observation I:** Any positive integer can appear as a difference of translation elements for at most one class.
- **Observation II:** The largest possible difference is $n - k$.

Our main result establishes the other direction.

Theorem

For any positive integers k and h, there exists an integer $\ell(k, h) = \ell$ such that the following holds.
Main structural result

Recall: \(F_k(n) \leq \binom{n-1}{k-1} + n - k \). **Proof idea:**

- Partition sets in \(\left(\begin{array}{c} n \\ k \end{array} \right) \) into classes of translates of \(k \)-sets in \(\{0\} \cup [n-1] \) that contain 0.
- **Observation I:** Any positive integer can appear as a difference of translation elements for at most one class.
- **Observation II:** The largest possible difference is \(n - k \).

Our main result establishes the other direction.

Theorem

For any positive integers \(k \) and \(h \), there exists an integer \(\ell(k, h) = \ell \) such that the following holds. Let \(A_1, \ldots, A_h, B_1 \ldots, B_h \subset \mathbb{Z} \) be \(B_\ell \)-sets of cardinality \(k \) all having the same minimal element.
Main structural result

Recall: $F_k(n) \leq \binom{n-1}{k-1} + n - k$. **Proof idea:**

- Partition sets in $\left(\begin{bmatrix} n \\ k \end{bmatrix}\right)$ into classes of translates of k-sets in $\{0\} \cup [n - 1]$ that contain 0.
- **Observation I:** Any positive integer can appear as a difference of translation elements for at most one class.
- **Observation II:** The largest possible difference is $n - k$.

Our main result establishes the other direction.

Theorem

For any positive integers k and h, there exists an integer $\ell(k, h) = \ell$ such that the following holds. Let $A_1, \ldots, A_h, B_1 \ldots, B_h \subset \mathbb{Z}$ be B_ℓ-sets of cardinality k all having the same minimal element. Then

$$A_1 + \cdots + A_h = B_1 + \cdots + B_h \iff \{A_1, \ldots, A_h\} = \{B_1, \ldots, B_h\},$$

where the equality on the right-hand side is as multisets.

Implies the first main result since there are only $O_{k,h}(n^{k-2})$ non-B_ℓ-sets of cardinality k in $[n]$ that contain e.g. 1, as long as ℓ only depends on k and h.
Proof and key lemma

The key tool to prove the structural result will be the following lemma.
Proof and key lemma

The key tool to prove the structural result will be the following lemma.

Lemma

Let $A, B, D \subset G$ be subsets of an abelian group G such that A is a Sidon set. Then for any set $X \subset A$ satisfying $|X| > |B|$, it holds that

$$X + D \subset A + B \implies D \subset B.$$
Proof and key lemma

The key tool to prove the structural result will be the following lemma.

Lemma

Let $A, B, D \subset G$ be subsets of an abelian group G such that A is a Sidon set. Then for any set $X \subset A$ satisfying $|X| > |B|$, it holds that

$$X + D \subset A + B \implies D \subset B.$$

Key insight to use this lemma: If A is a $B_{2\ell}$-set, then $A + X$ is a B_ℓ-set for any $X \subset A$.
Proof and key lemma

The key tool to prove the structural result will be the following lemma.

Lemma

Let \(A, B, D \subset G \) be subsets of an abelian group \(G \) such that \(A \) is a Sidon set. Then for any set \(X \subset A \) satisfying \(|X| > |B| \), it holds that

\[
X + D \subset A + B \implies D \subset B.
\]

- **Key insight** to use this lemma: If \(A \) is a \(B_{2\ell} \)-set, then \(A + X \) is a \(B_{\ell} \)-set for any \(X \subset A \).
- **Toy example** \(A + B = A + D \) with \(k \geq 2 \): If \(A \) is \(B_4 \)-set, then \(A + A \) is a Sidon set and we have \(A + A + B = A + A + D \) and can apply the lemma.
Proof and key lemma

The key tool to prove the structural result will be the following lemma.

Lemma

Let $A, B, D \subset G$ be subsets of an abelian group G such that A is a Sidon set. Then for any set $X \subset A$ satisfying $|X| > |B|$, it holds that

$$X + D \subset A + B \implies D \subset B.$$

- **Key insight** to use this lemma: If A is a $B_{2\ell}$-set, then $A + X$ is a B_{ℓ}-set for any $X \subset A$.

- **Toy example** $A + B = A + D$ with $k \geq 2$: If A is B_4-set, then $A + A$ is a Sidon set and we have $A + A + B = A + A + D$ and can apply the lemma.

- **General case:** Instead of adding A to both sides of $A + B = C + D$, we add $X_0 = A \cap C$. Can guarantee $|X_0| \geq 2$ and then repeat this with new intersection

$$X_1 = (X_0 + A) \cap (X_0 + C)$$

until at some point we are larger than k.

Further outlook and open questions

- Key lemma holds in arbitrary abelian groups, structural theorem also in more general settings than \(\mathbb{Z} \) (e.g. \(\mathbb{R} \), groups admitting a total order)
Key lemma holds in arbitrary abelian groups, structural theorem also in more general settings than \(\mathbb{Z}\) (e.g. \(\mathbb{R}\), groups admitting a total order)

Key point: If we can guarantee \(|(A_i - A_i) \cap (B_j - B_j)| \geq 2\), then we can boost this to get full structural theorem for any abelian group.
Key lemma holds in arbitrary abelian groups, structural theorem also in more general settings than \(\mathbb{Z} \) (e.g. \(\mathbb{R} \), groups admitting a total order).

Key point: If we can guarantee \(|(A_i - A_i) \cap (B_j - B_j)| \geq 2\), then we can boost this to get full structural theorem for any abelian group.

Main open question: Suppose \(G \) abelian group, \(A, B, C, D \subset G \) with same cardinality and \(A + B = C + D \). Does there always exist \(U \in \{A, B\}, V \in \{C, D\} \) that share a non-zero difference?

Some partial progress on this for specific groups and/or values of \(k \).

Other questions: Dependence of \(\ell \) on \(k \), sharp threshold in the constants \(c, C \) of the probabilistic statements, ...
Further outlook and open questions

- **Key lemma** holds in arbitrary abelian groups, structural theorem also in more general settings than \(\mathbb{Z} \) (e.g. \(\mathbb{R} \), groups admitting a total order).

- **Key point:** If we can guarantee \(|(A_i - A_i) \cap (B_j - B_j)| \geq 2\), then we can boost this to get full structural theorem for any abelian group.

- **Main open question:** Suppose \(G \) abelian group, \(A, B, C, D \subset G \) with same cardinality and \(A + B = C + D \). Does there always exist \(U \in \{A, B\}, V \in \{C, D\} \) that share a non-zero difference?

- Some partial progress on this for specific groups and/or values of \(k \).
Further outlook and open questions

- Key lemma holds in arbitrary abelian groups, structural theorem also in more general settings than \(\mathbb{Z} \) (e.g. \(\mathbb{R} \), groups admitting a total order).

- **Key point:** If we can guarantee \(|(A_i - A_i) \cap (B_j - B_j)| \geq 2\), then we can boost this to get full structural theorem for any abelian group.

- **Main open question:** Suppose \(G \) abelian group, \(A, B, C, D \subset G \) with same cardinality and \(A + B = C + D \). Does there always exist \(U \in \{A, B\}, V \in \{C, D\} \) that share a non-zero difference?

- Some partial progress on this for specific groups and/or values of \(k \).

- **Other questions:** Dependence of \(\ell \) on \(k \), sharp threshold in the constants \(c, C \) of the probabilistic statements, ...
Thank you all for your attention!