(1) (30pt) Let Z_i be a bisimulation between models \mathcal{M}_1 and \mathcal{M}_2, for each $i \in I$. Are the following relations bisimulations between \mathcal{M}_1 and \mathcal{M}_2:

- the union $\bigcup_{i \in I} Z_i$?
- the intersection $\bigcap_{i \in I} Z_i$?

Give a proof or a counter-example.

(2) (20pt) Let $\mathcal{M} = (\mathbb{N}, R, V)$ be a model such that nRm iff $m = n + 1$, $V(p) = \{3k : k \in \mathbb{N}\}$ and $V(q) = \{3k + 2 : k \in \mathbb{N}\}$. Let also $\Sigma = \{p, q, \Diamond q\}$. As usual we assume that $0 \in \mathbb{N}$.

Describe the models \mathcal{M}^s and \mathcal{M}^l, where \mathcal{M}^s is the smallest and \mathcal{M}^l is the largest filtration of \mathcal{M} through Σ.

(3) (30pt) Prove that the filtrations \mathcal{M}^s and \mathcal{M}^l are indeed the smallest and largest filtrations, respectively.

(4) (20pt) Show that, given a transitive relation R, the relation R^t (the transitive Lemmon filtration from Lemma 2.42 in the Blackburn, de Rijke, Venema book) is indeed a filtration and that any filtration of a transitive model that makes use of R^t is guaranteed to be transitive.

(5) (BONUS!) (10pt) Show that any finite transitive filtration of a model based on the rationals with their usual ordering is a finite linear sequence of clusters, perhaps interspersed with singleton irreflexive points, no two of which can be adjacent.

Here a cluster on a transitive frame (W, R) is a subset $C \subseteq W$ that is a maximal equivalence relation under R. That is, the restriction of R to C is an equivalence relation, and this is not the case for any other $D \subseteq W$ such that $C \subsetneq D$.