MATHEMATICAL STRUCTURES IN LOGIC 2016 HOMEWORK 2

- Deadline: February 16 at the **beginning** of class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Frederik Lauridsen (f.m.lauridsen@uva.nl)
- Grading is from 0 to 10 points.
- Success!
- (1) (4pt) Do the following equations hold in any Heyting algebra? If yes, give a proof, if not, provide a counter-example.

(a)
$$(a \lor b) \to c = (a \to c) \land (b \to c)$$
,

(b)
$$\neg \neg a \lor \neg a = 1$$
,

(c)
$$\neg \neg \neg a = \neg a$$
,

(d)
$$(a \rightarrow b) \lor (b \rightarrow a) = 1$$
.

Here
$$\neg a = a \to 0$$
.

- (2) (2pt) Show that the lattice $(\text{Fin}(\mathbb{N}) \cup \{\mathbb{N}\}, \subseteq)$ of finite subsets of \mathbb{N} (together with \mathbb{N}) forms a complete bounded distributive lattice. Is this lattice a Heyting algebra?
- (3) (2pt) Let L be a lattice. An element $a \in L$ is compact iff whenever $\bigvee A$ exists and $a \leq \bigvee A$ for $A \subseteq L$, then $a \leq \bigvee B$ for some finite $B \subseteq A$. We let $\mathbf{K}(L)$ denote the set of compact elements of L. For each of the following statements provide a proof or give a counterexample
 - (a) For each lattice L the set $\mathbf{K}(L)$ is closed under finite joins;
 - (b) For each lattice L the set $\mathbf{K}(L)$ is closed under finite meets.
- (4) (2pt) We say that a lattice L is compactly generated if each element $a \in L$ is the supremum of a set of compact elements
 - (a) Show that every distributive lattice which is complete and compactly generated must necessarily be a Heyting algebra.
 - (b) Give an example of a complete Heyting algebra which is not compactly generated.