MATHEMATICAL STRUCTURES IN LOGIC 2016 HOMEWORK 3

- Deadline: February 23 at the **beginning** of class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Julia Ilin ilin.juli@gmail.com
- Grading is from 0 to 10 points.
- Success!
- (1) (4pt) The aim of this exercise is to understand the connection between filters and congruences of a Boolean algebra.

Given a Boolean algebra A and a filter $F \subseteq A$, define a relation \sim_F by

$$a \sim_F b$$
 iff $a \leftrightarrow b \in F$.

Conversely, given a congruence \sim on A define F_{\sim} by

$$F_{\sim} = [1]_{\sim}.$$

- (a) \sim_F is a congruence. Show the \lor -clause of this statement. That is, show that if $a \sim_F b$ and $c \sim_F d$, then $a \lor c \sim_F b \lor d$.
- (b) Show that ~ is equal to $\sim_{F_{\sim}}$.
- (c) Show that F is equal to F_{\sim_F} .
- (2) (3pt) Let A be a Boolean algebra. A filter F of the form $\uparrow a$ for some $a \in A$ is called a *principal filter*. Let FinCofin(\mathbb{N}) be the Boolean algebra of all finite and cofinite subsets of \mathbb{N} .
 - (a) Show that for each $n \in \mathbb{N}$, the set $\{U \in \operatorname{FinCofin}(\mathbb{N}) : n \in U\}$ is a principal filter. Show also that it is a maximal filter.
 - (b) Show that there is a unique (!) maximal non-principle filter in $FinCofin(\mathbb{N})$.
- (3) (3pt) Let A be a finite Boolean algebra. We order the set of all filters of A by inclusion. Show that A has a least non-unital filter iff A is isomorphic to a twoelement Boolean algebra. Note that a least non-unital filter is a filter $F \subseteq A$ such that $F \neq \{1\}$ and for each filter $F' \neq \{1\}$ we have $F \subseteq F'$.
- (4) (3pt) (**BONUS!**) Give an algebraic proof of Glivenko's theorem.