MATHEMATICAL STRUCTURES IN LOGIC 2016 HOMEWORK

- Deadline: March 1 - at the beginning of class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Frederik Lauridsen f.m.lauridsen@uva.nl
- Grading is from 0 to 10 points.
- Success!
(1) (2pt) The aim of this exercise is to understand a duality of complete and atomic Boolean algebras and sets. This duality is closely related to Stone duality, but still differs from it.

A Boolean algebra B is called atomic, if given $a \neq 0$ in B, there exists an atom $b \in B$ such that $b \leq a$. Let CABA be the class of complete and atomic Boolean algebras. Let also Set be the class of all sets. To each set X we associate the powerset Boolean algebra $\mathcal{P}(X)$. To each complete and atomic Boolean algebra B we associate the set $\mathcal{A}(B)$ of its atoms. Show that
(a) Every complete and atomic Boolean algebra B is isomorphic to $\mathcal{P}(\mathcal{A}(B))$.
(b) Every set X is bijective to $\mathcal{A}(\mathcal{P}(X))$.

Categorical aspects of this correspondence will be discussed in the tutorial exercises.
(2) (2pt) Let L be a lattice and $A \subseteq L$ a non-empty set. Show that

$$
[A)=\uparrow\left\{a_{1} \wedge \cdots \wedge a_{n}: n \in \mathbb{N}, a_{1}, \ldots a_{n} \in A\right\}
$$

is a filter, and moreover it is contained in any filter F of L which contains A.
(3) (3pt) A topological space X is called extremally disconnected if the closure of every open set in X is open (hence clopen since the closure is always closed). Prove that a Boolean algebra B is complete if and only if the Stone space X_{B} dual to B is extremally disconnected.
(4) (3pt) Let X be a Stone space. Prove that a map $\varepsilon: X \rightarrow X_{\operatorname{Clop}(X)}$ (where $X_{\operatorname{Clop}(X)}$ is the Stone space dual to $\operatorname{Clop}(X))$ defined by $\varepsilon(x)=\{U \in \operatorname{Clop}(X): x \in U\}$ is a well-defined bijection and that for each clopen in $X_{\mathrm{Clop}(X)}$ its ε-pre-image is clopen in X.

The following characterization of compactness might be useful: a space X is compact if and only if for any family \mathcal{C} of closed sets with the finite intersection property we have $\bigcap \mathcal{C} \neq \emptyset$. Note that $\mathcal{C}=\left\{C_{i}: i \in I\right\}$ has the finite intersection property iff for any finite $J \subseteq I$ the intersection $\bigcap\left\{C_{i}: i \in J\right\} \neq \emptyset$.

