The FMP for HAs

Nick Bezhanishvili Institute for Logic, Language and Computation University of Amsterdam

Locally finite reducts

Although Heyting algebras are not locally finite, they have locally finite reducts.

Heyting algebras $(A, \land, \lor, \rightarrow, 0, 1)$.

 \lor -free reducts (A, \land , \rightarrow , 0, 1): implicative semilattices.

 \rightarrow -free reducts (A, \land , \lor , 0, 1): distributive lattices.

Theorem.

- (Diego, 1966). The variety of implicative semilattices is locally finite.
- (Folklore). The variety of distributive lattices is locally finite.

Proof idea. Suppose $B \not\models \varphi$.

Then there exist elements $a_1, \ldots, a_n \in B$ on which φ is refuted.

We generate the implicative semilattice $(A, \land, \rightarrow, 0)$ of *B* by the subpolynomials Σ of $\varphi(a_1, \ldots, a_n)$.

By Diego's theorem $(A, \land, \rightarrow, 0)$ is finite.

FMP

We define a "fake" $\dot{\lor}$ on A by $a\dot{\lor}b = \bigwedge \{s \in A : s \ge a, b\}$. Then $(A, \land, \dot{\lor}, 0, \rightarrow)$ is a finite Heyting algebra. Also for $a, b \in A$ we have

 $a \lor b \leq a \dot{\lor} b.$

Moreover, if $a \lor b \in \Sigma$ then

$$a \lor b = a \dot{\lor} b.$$

This implies that the algebra $(A, \land, \lor, \rightarrow, 0)$ refutes φ .

Open problems discussed at the lecture

• Characterize locally finite varieties of Heyting algebras.

Conjecture: A variety **V** of Heyting algebras is locally finite iff $F_{\mathbf{V}}(2)$ is finite.

• Is every variety of Heyting algebras generated by a class of Heyting algebras of the form Op(*X*) for some topological space *X* (Kuznetsov, 1975).

Heyt is generated by $Op(\mathbb{R})$ (McKinsey and Tarski, 1946).