MATHEMATICAL STRUCTURES IN LOGIC 2017 HOMEWORK 2

- Deadline: March 6 at the **beginning** of class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Mees de Vries (mees.devries@student.uva.nl).
- Grading is from 0 to 100 points.
- Discussion of problems is allowed, but each student should submit a homework they themselves have written.
- Success!
- (1) (40pt) Do the following equations hold in any Heyting algebra? If yes, give a proof, if not, provide a counter-example.
 - (a) $(a \lor b) \to c = (a \to c) \land (b \to c),$
 - (b) $\neg \neg a \lor \neg a = 1$,

(c)
$$\neg \neg \neg a = \neg a$$
,

(d)
$$(a \rightarrow b) \lor (b \rightarrow a) = 1.$$

Here $\neg a = a \rightarrow 0$.

- (2) (40pt)
 - (a) Show that the lattice $(\operatorname{FinCofin}(\mathbb{N}), \subseteq)$ of finite and cofinite subsets of \mathbb{N} forms a Boolean algebra. Show that this Boolean algebra is not complete.
 - (b) Show that the lattice (Fin(N) ∪ {N}, ⊆) of finite subsets of N (together with N) forms a complete bounded distributive lattice. Is this lattice a Heyting algebra? Justify your solution.
- (3) (20pt) Let L be a lattice. We say that a non-zero element $a \in L$ is join prime if $a \leq b \lor c$ implies $a \leq b$ or $a \leq c$. (Check exercise sheet 1 for the definition of join irreducible elements.)
 - (a) Show that in a distributive lattice the join irreducible elements coincide with the join prime elements.
 - (b) Give an example of a lattice having a join irreducible element which is not a join prime element.