MATHEMATICAL STRUCTURES IN LOGIC 2017 HOMEWORK 3

- Deadline: March 20 at the **beginning** of class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Mees de Vries (mees.devries@student.uva.nl).
- Grading is from 0 to 100 points.
- Success!
- (1) (20pt) Draw the Heyting algebra of all up-sets of the poset drawn below.

(2) (20pt) Let A be the Heyting algebra drawn below.

Find an embedding $\iota: A \hookrightarrow \prod_{i \in I} A_i$ of HAs such that for each $i \in I$ the algebra A_i is a linear HA and $\pi_i \circ \iota: A \to A_i$ is surjective.

(3) (20pt) Recall that a topological space is called T_0 if for each $x \neq y$ there exists an open set U such that $(x \in U \text{ and } y \notin U)$ or $(y \in U \text{ and } x \notin U)$.

Let (X, \leq) be a pre-ordered set (i.e., \leq is reflexive and transitive). Let (X, τ) be the corresponding Alexandroff topology. What is a necessary and sufficient condition on \leq so that (X, τ) is a T_0 -space. Justify your solution.

- (4) (40pt) Let A be a Heyting algebra and $\operatorname{Rg}(A) = \{\neg \neg a : a \in A\}$. Then $\operatorname{Rg}(A)$ is a Boolean algebra, where $a \lor b = \neg \neg (a \lor b)$. Show that
 - (a) $\operatorname{Rg}(A) = \{a = \neg \neg a : a \in A\}.$
 - (b) Show that $\neg \neg : A \to \operatorname{Rg}(A)$ is a \lor -homomorphism (i.e., that it commutes with the operation \lor . (In fact, it also commutes with \to and \land , but you do not have to show that.)