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Abstract We review the step-by-step method of constructing finitely generated
free modal algebras. First we discuss the global step-by-step method, which works
well for rank one modal logics. Next we refine the global step-by-step method to
obtain the local step-by-step method, which is applicable beyond rank one modal
logics. In particular, we show that it works well for constructing the finitely generated
free algebras for such well-known modal systems as T, K4 and S4. This yields the
notions of one-step algebras and of one-step frames, as well as of universal one-
step extensions of one-step algebras and of one-step frames. We show that finitely
generated free algebras for T, K4 and S4 and their dual spaces can be obtained
by iterating the universal one-step extensions of one-step algebras and of one-step
frames. In the final part of the paper we compare our construction with recent
literature, especially with [11] which has a very similar approach.

1 Introduction

Having a good description of finitely generated free algebras is an important tool for
investigating propositional logics: free algebras give an insight on the shape of for-
mulae and on the deduction mechanism that is independent of the particular syntactic
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methodology used for introducing a logical calculus. With a clear combinatorial and
conceptual description of free algebras in mind, one can better investigate metathe-
oretical properties like admissibility of inference rules, solvability of equations,
definability and interpretability matters, etc.

For modal logics (or some other non-classical logics such as intuitionistic logic),
one way to characterize finitely generated free algebras is to use the relevant proper-
ties of their dual spaces: many of these algebras are atomic [3, 4, 9], thus restricting
dual spaces to atoms still gives the possibility of having a representation theorem.
The spaces of the atoms become the so-called ‘universal models’ and finitely gen-
erated free algebras can be described as the algebras of definable subsets of these
models. Atoms, in turn, generate ‘irreducible’ or ‘definable’ finite models (along
the suggestions of [27] and [21]): such models can be described inductively, using
for instance the height of the model. This line of research has been largely explored
in a long series of papers in the 1970’s and 1980’s by the Georgian school (see,
e.g., [15, 16, 24]), the Russian school (see, e.g., [31, 30]), and the Italian logician
F. Bellissima (see, e.g., [3, 4, 5]). We refer to [10] and [6] for an overview.

Still, duality can be used in another way to get descriptions of finitely generated
free algebras: formulae naturally come equipped with a complexity measure, the
measure counting maximum nested ‘intensional’ operators occurring in them. By
‘intensional’ operators we mean modal operators (or implication in the context of in-
tuitionistic or relevance logic); non-intensional operators are the Boolean connectives
(or a subset of them) and it is well known that only a finite number of combinations
of such operators can be applied (up to logical equivalence) to a finite set of given
formulae. Thus, finitely generated free algebras have a ‘dual profinite’ description as
chain colimits of finite algebras defined by imposing complexity bounds. By finite
duality, these finite algebras admit a description as finite discrete spaces and the
intensional operators (which are only partially defined on them) induce a kind of
combinatorial structure. The investigation of such combinatorial structure paves the
way to a new, different description of finitely generated free algebras, a description
that we call a step-by-step description: its essence is in fact the dual explanation of
what it means to enrich a given set of formulae by one application of intensional oper-
ators followed by the finite closure with respect to the non-intensional operators. Of
course, the whole construction should not destroy previously introduced intensional
operators, that is why it applies to a ‘one-step algebra’ and results into an updated
‘one-step algebra’.

The origin of these step-by-step constructions is two-fold: from the logical point
of view they describe normal forms (in the sense of K. Fine [17]), and from the
coalgebraic point of view they correspond to free coalgebra constructions ([1], [2],
[8], [11], [20]). However, coalgebraic constructions work well for rank one logics
(e.g., K and D in modal logic), but become unclear or quite involved when arbitrary
subvarieties/logics are involved. Our plan is to exploit discrete dualities and the
step-by-step combinatorics to illustrate potential applications of the method outside
the rank one case.
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We start the paper by reviewing the general idea of the step-by-step method which,
via duality, results in the dual description of free K-algebras and free algebras for
rank one modal logics. We then extend this method to logics of higher rank using the
new notion of a one-step algebra and its dual notion of a one-step frame. We adjust
these ideas to particular non-rank one logics such as T, K4 and S4 obtaining (duals
of) finitely generated free algebras of these logics in a transparent and modular way.
Our construction closely follows the method developed in [11] for various non-rank
one modal logics. We discuss the similarities and differences of our construction
with that of [11], as well as with those of [20] and [22]. We also list a number of
(challenging) open problems.

In the paper we mention finitely generated free Heyting algebras only briefly,
and refer the interested reader to [19] and [7] for details. However, we believe that
one-step algebras and one-step frames have a potential to play an important role in
the theory of free algebras in various varieties of Heyting algebras.

We conclude our introduction by pointing out that another co-author of this
paper was going to be Dito Pataraia. He developed interest towards the step-by-step
method after Leo Esakia drew his attention to [19] where free Heyting algebras were
described via this method. Both Dito and Leo were very interested in this method.
Dito’s interest towards this construction was mostly determined by its use in proving
that every Heyting algebra can be realized as the subobject classifier of an elementary
topos. Dito gave a few talks about this important theorem and his colleagues are now
trying to reconstruct his very involved and original proof, a part of which essentially
uses the step-by-step method. Dito had a number of deep observations on the step-
by-step construction for free Heyting and modal algebras, and many of them were
supposed to form part of this paper. Leo was interested in this method as it gives
an alternative and useful perspective on Esakia spaces of free Heyting algebras (see
[18] for more details on this). In fact, Esakia duality for Heyting algebras plays a
prominent role in this and nearly all other approaches that apply the ideas of duality
to various constructions of Heyting algebras. With great sadness for their loss, but
with a lot of admiration for their outstanding scientific achievements, their unique
character and personality, we would like to dedicate this paper to the memory of Leo
Esakia and Dito Pataraia.

2 The global step-by-step method

In this section we recall the global step-by-step method and construct free K-algebras.
As we will see, this method works nicely for rank one modal logics, but its extension
to arbitrary modal logics, although possible, is quite laborious and involved [20]. We
recall that a modal formula is of rank one if each occurrence of atomic formulas
(i.e., propositional variables or constants) is under the scope of exactly one modal
operator; moreover, the constants ⊥, �, may appear in rank one formulae without
being under the scope of any modal operator. A modal logic is of rank one if it can
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be axiomatized by rank one modal formulae. In Section 3 we will refine the global
step-by-step method to the local step-by-step method that works for modal logics of
higher rank. This will result in a neat description of finitely generated free algebras
for the well-known modal systems T, K4 and S4.

Recall that a modal algebra is a pair (B,✸), where B is a Boolean algebra and
✸ : B → B is a unary operation satisfying ✸0 = 0 and ✸(a∨b) =✸a∨✸b for each
a,b ∈ B. A modal algebra (B,✸) is called a T-algebra if a ≤✸a and a K4-algebra if
✸✸a ≤✸a for each a ∈ B. Finally, (B,✸) is an S4-algebra if it is both a T-algebra
and a K4-algebra.

2.1 Algebraic view

The method we discuss in this section is taken essentially from [20] and [1] (see
also [8]). Thus, we only sketch the construction and refer the interested reader to any
of [20], [1], [8] for details.

Given a Boolean algebra B, we let V (B) denote the free Boolean algebra generated
by the set {✸a : a ∈ B} and quotiented by the two axioms defining modal algebras.
Alternatively V (B) is the free Boolean algebra over the join-semilattice ∨,0-reduct
(equivalently ∧,1-reduct) of B. That is, the map i

B
✸ : B →V (B) (mapping a ∈ B to

✸a ∈V (B)) is such that it is a join-semilattice morphism (preserves ∨ and 0), and
for any Boolean algebra A, any join-semilattice morphism h : B → A can be extended
uniquely to a Boolean homomorphism h

T : V (B)→ A so that h
T ◦ i

B
✸ = h. Actually, V

can be turned into an endofunctor on the category of Boolean algebras in a standard
way: by letting V ( f ) (for f : B → C) be (iC✸ ◦ f )T . Note that the correspondence
h �→ h

T is bijective and, as a consequence, modal algebras can be equivalently
defined as Boolean algebras B equipped with semilattice morphisms ✸T : V (B)→ B

(we shall exploit this fact below).
Let B0 be the free Boolean algebra on n-generators. For each k � 0 we let

Bk+1 = B0 +V (Bk),

where + means the coproduct in the category of Boolean algebras. As Boolean
algebras are locally finite, the coproduct of two finite Boolean algebras is again finite.

We define the maps ik : Bk → Bk+1 and ✸T

k
: V (Bk)→ Bk+1 as follows. Let ✸T

k
be

the second injection into the coproduct, and let ik be defined recursively as follows:
i0 is the first coproduct injection and ik+1 is id +V (ik). Let B∞ be the colimit of the
following diagram in the category of Boolean algebras and Boolean homomorphisms

B0
i0−→ B1 → · · ·→ Bk

ik−→ Bk+1 → · · · (1)

Proposition 1. For each k ≥ 0 we have ✸T

k+1 ◦V (ik) = ik+1 ◦✸T

k
. Therefore, {✸T

k
:

k ≥ 0} can be extended to a map ✸T
∞ : V (B∞)→ B∞.
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Proof. (Sketch) That ✸T

k+1 ◦V (ik) = ik+1 ◦✸T

k
holds can be easily seen by a direct

computation (recall that the two diamonds are just the coproduct injections). To
define ✸T

∞ one can then use the fact that V commutes with chain (more generally
with filtered) colimits: thus, we can assume that the domain of ✸T

∞ is the colimit of

V (B0)
V (i0)−−−→V (B1)→ · · ·→V (Bk)

V (ik)−−−→V (Bk+1)→ · · · (2)

in the category of Boolean algebras and Boolean homomorphisms. Now the maps
✸T

k
: V (Bk)→ Bk+1 form vertical maps from the chain (2) to the chain (1) commuting

the related squares, hence it induces a colimit map which is our ✸T
∞.

Let ✸k : Bk → Bk+1 be the map that corresponds to ✸T

k
: V (Bk)→ Bk+1 and let

✸∞ : B∞ → B∞ be the map that corresponds to ✸T
∞ : V (B∞)→ B∞. Then we have the

following characterization of finitely generated free modal algebras.

Proposition 2. The algebra �B∞,✸∞� is the free modal algebra on n generators.

Proof. See [20], [1], [8].

Let L be a normal modal logic and VL the corresponding variety of modal algebras.
We also let Ax(L) be a (finite or infinite) equational axiomatization of VL. We will
now briefly sketch how to extend the above method to obtain finitely generated free
VL-algebras.

If we try to quotient (1) by the axioms of Ax(L), we need to interpret modal
formulae into the steps of a chain colimit algebra and then take a quotient of the
algebras in the chain. The definition of such interpretation must take into account the
fact that the axioms have arbitrary modal rank, hence the interpretation involves many
algebras at a time. If the axioms have modal rank one, the situation simplifies because
we can modify uniformly the whole construction, by taking instead of V a suitable
quotient of it [20], [8]. Examples of logics of rank one include D = K+✸� =
K+✷p →✸p, K+✸p →✷p and K+✷p ↔✸p.

2.2 Dual view

For the purposes of our paper it suffices to restrict ourselves to the discrete duality
between finite modal algebras and finite relational structures. Almost all the results
can be generalized to the infinite case by defining an appropriate Stone topology on
relational structures (see, e.g., [18]). We chose to stick to the finite duality to keep
the arguments simple.

We recall that there is a one-to-one correspondence between join preserving maps
between finite Boolean algebras and relations on their dual finite sets. In fact, the
category of finite Boolean algebras and ∨,0-preserving maps is dually equivalent to
the category of finite sets and binary relations (see, e.g., [28], [25]).
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Let X be a set and ℘(X) its powerset. Then it is easy to see that for each Y ,
any relation R ⊆ Y ×X uniquely corresponds to a map f : Y →℘(X) defined by
f (y) = R(y) = {x ∈ X : yRx}. Throughout this paper we will use twofold notations
for binary relations interchangeably: as subsets of a cartesian product or as maps into
the powerset.

Given a finite set X , let � be the relation on ℘(X)×X defined by U � x iff x ∈U

for each U ∈℘(X) and x ∈ X . Then X , ℘(X) and � have the following universal
property: for each finite Y and R ⊆ Y ×X , there exists a unique map f : Y →℘(X)
(defined by f (y) = R(y)) such that we have R = � ◦ f . The last equation refers to
relational composition, i.e. it means that for each x ∈ X ,y ∈ Y we have yRx iff (there
is S ∈℘(X) such that x ∈ S and S = f (y)) iff x ∈ f (y).

Remark 1. In the general case we need to consider Stone spaces and continuous
relations and maps. But the same correspondence holds in this case as well. That
is, if Y is a Stone space (i.e., the dual of a Boolean algebra) and R is a continuous
relation (i.e., the dual of a join-preserving map), then f is also a continuous map (i.e.,
the dual of a Boolean algebra homomorphism).

Translating this into algebraic terms gives us that the join-semilattice morphism
dual to � and the Boolean algebra dual to ℘(X) satisfy the universal property of
V (B) and i

B
✸ discussed in the previous section. Thus, as the universal property defines

an object uniquely up to an isomorphism, we obtain the following theorem.

Proposition 3. ([20, Prop. 2.1], [32]) Let B be a finite Boolean algebra and X its

dual finite set. Then the algebra V (B) is dual to ℘(X). Moreover, the map i
B
✸ : B →

V (B) is dual to the relation � ⊆℘(X)×X.

Remark 2. We note that this result can be generalized to the infinite case by consider-
ing Stone spaces and continuous maps and relations, and by taking the Vietoris space
instead of the finite powerset. We also refer to [26, Ch. III.4] for generalizations of
this result to compact regular frames.

Now we are ready to construct the duals of free modal algebras. Let X0 be a
2n-element set (the dual of B0) and (because of the duality of ℘and V (Proposition 3)
and of × and +) let

Xk+1 = X0 ×℘(Xk).

Proposition 4. The sequence (Xk)k<ω with the maps πk : X0 ×℘(Xk)→ Xk defined

by

π0(x,U) = x, πk(x,U) = (x,πk−1[U ])

is dual to the sequence (Bk)k<ω with the maps ik : Bk → Bk+1. In particular, the πk

are surjective. Moreover, the relation Rk ⊆ (X0 ×℘(Xk))×Xk defined by

(x,U)Rky iff y ∈U

is dual to ✸k : Bk → Bk+1.
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Theorem 1. Let Xω be the limit in the category of Stone spaces and continuous

maps of the diagram (Xk)k∈ω with the maps πk+1 : Xk+1 → Xk. Let also Rω be the

limit of (Rk)k∈ω in the category of Stone spaces and continuous relations defined

by (xi)i∈ω Rω(yi)i∈ω if xk+1Rkyk for each k ∈ ω . Then (Xω ,Rω) is (isomorphic in a

suitable category to) the dual of the free modal algebra (Bω ,✸ω).

Thus, via the global step-by-step method we described finitely generated free
modal algebras and their dual spaces.

3 The local step-by-step method

The construction presented in the previous section is very useful for logics axiom-
atized by rank one equations. It, however, also has some drawbacks. For example,
there is no manageable way to apply it to the well-known extensions of K such as K4

and S4 (it works for T, but for the other systems the adaptation is involved, see [20]).
The point is that the definition of step k+1 mentions not only step k but also step 0,
which is rather unnatural. In this section we introduce a refinement of the construc-
tion. From an algebraic point of view, the new construction may be considered as just
a trivial variant of the former one. Nevertheless it induces better constructions at the
dual level. Its distinguishing feature is that the construction is local in that it relies
on the universal property of the one-step construction (see [19, 22, 11] for similar
ideas).

3.1 Algebraic view

As we pointed out in the introduction, the essence of the method we propose is to
build free algebras in steps; a single step (taken independently on the whole chain
of steps needed to build the free algebra as a colimit) applies the modal operators
to the existing propositions and embeds the actual propositions into the new ones.
This leads naturally to a two-sorted viewpoint: we have one algebra for the actual
propositions and another one collecting actual and new propositions; moreover the
two algebras are connected by an embedding and a diamond. All this is formally
captured by the following definition.

Definition 1.

1. A one-step modal algebra is a quadruple (A0,A1, i0,✸0), where A0,A1 are
Boolean algebras, i0 : A0 → A1 is a Boolean morphism, and ✸0 : A0 → A1
is a semilattice morphism. The algebras A0,A1 are called the source and the
target Boolean algebras of the one-step modal algebra (A0,A1, i0,✸0).
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2. A one-step extension of the one-step modal algebra (A0,A1, i0,✸0) is a one-step
modal algebra (A1,A2, i1,✸1) (i.e., it is a one-step modal algebra whose source
is the same as the target of (A0,A1, i0,✸0)) satisfying i1✸0 =✸1i0.

3. The universal one step-extension of (A0,A1, i0,✸0) is a one-step extension
(A1,A2, i1,✸1) such that for every other one-step extension (A1,A�

2, i
�
1,✸

�
1), there

is a unique Boolean morphism µ : A2 → A
�
2 such that µ ◦ i1 = i

�
1 and µ ◦✸1 =✸�

1.
The meaning of the universal one-step extension is that it represents the general
solution to the problem of adding ✸1a1 for all a1 ∈ A1 while keeping (through
i1) the ✸0a0 for a ∈ A0.

Universal one-step extensions exist and are easily built through pushouts:

Proposition 5. The universal one-step extension of (A0,A1, i0,✸0) is given by the

following pushout taken in the category of Boolean algebras and Boolean homomor-

phisms.

V (A0) V (A1)

A1 A2
i1

✸T

1

V (i0)

✸T

0

where A2 = A1 +V (A0)V (A1).

Proof. Immediate by the universal property of pushouts.

Let B0 be the free Boolean algebra on n-generators. We define a new sequence
Bk by using pushouts. In the new sequence, the algebras B

�
0,B

�
1 and the morphisms

i
�
0,✸

T

0 are as before; for k ≥ 1, we have instead

B
�
k+1 := B

�
k
+V (B�

k−1)
V (B�

k
)

where i
�
k
,✸T

k
are the canonical maps into the pushout

V (B�
k−1) B

�
k

V (B�
k
) B

�
k+1

✸T

k

i
�
k

✸T

k−1

V (i�
k−1)

Let B
�
∞ be the colimit of the diagram
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B0
i
�
0−→ B

�
1 → ...→ B

�
k

i
�
k−→ B

�
k+1 → ... (3)

Then we have

Proposition 6. {✸T

k
: k ≥ 0} can be extended to a map ✸T

∞ : V (B�
∞)→ B

�
∞ such that

(B�
∞,✸∞) is the n-generated free modal algebra.

Proof. (Sketch) That ✸T

k+1 ◦V (i�
k
) = i

�
k+1 ◦✸T

k
holds now comes directly from the

commutativity of the above pushout square. Thus, ✸T
∞ can be defined in the colimit

like in the proof of Proposition 1. To show that the construction gives finitely gen-
erated free modal algebras, one can use Proposition 5, along the lines of e.g. [22]
(alternatively, it is possible to show inductively that the construction is isomorphic to
the global step-by-step construction of Proposition 2).

3.2 Dual view

The dual construction is described through the notion of a one-step frame.

Definition 2. A one-step frame is a quadruple (X ,Y, f ,R), where X ,Y are sets, f :
X → Y is a map and R ⊆ X ×℘(Y ) is a relation between X and Y .

The dual of a finite one-step frame (X ,Y, f ,R) is the one-step modal algebra
(℘(Y ),℘(X), f

∗,✸R), where f
∗ is the inverse image operation and ✸R is the semilat-

tice morphism associated with R (for A ⊆ Y , we have ✸R(A) = {x ∈ X | R(x)∩A �=
/0}). Every finite one-step modal algebra is the dual of a finite one-step frame (again,
to extend this duality beyond the finite case, Stone spaces, continuous maps, continu-
ous relations and Vietoris spaces are needed).

We can now dualize the local construction of Proposition 6 as follows: the dual
of i

�
k

is given by a map fk : Xk+1 → Xk between finite sets; the dual of ✸k is a
map Rk : Xk+1 →℘(Xk) (alternatively a relation Rk ⊆ Xk+1 ×Xk). Then the dual of
(B�

k
,B�

k+1, i
�
k
,✸k) is determined by the following diagram:

Xk+1 ℘(Xk)

Xk ℘(Xk−1)

Xk−1

fk−1

Rk−1

℘( fk−1)

Rk

fk



10 Nick Bezhanishvili, Silvio Ghilardi, and Mamuka Jibladze

where the square is a pullback, and for each map f : X → Y , we assume that ℘( f ) =
f [·] :℘(X)→℘(Y ) is the direct image of f . Thus, we have

Xk+1 = {(x,S) | x ∈ Xk,S ∈℘(Xk),Rk−1(x) = fk−1(S)},

with
fk(x,S) = x

and
Rk(x,S) = S.

We must also consider the dual of the first step of the chain leading to free modal
algebras. This is more simple, being just a coproduct not a pushout. In short, if X0 is
the finite set dual to the Boolean algebra B0, the dual of the one-step modal algebra
(B0,B0 +V (B0), i0,✸0) (where recall that i0,✸0 are the two coproduct injections) is
the one-step frame

(X0 ×℘(X0),X0, f0,R0) (4)

where f0 is the first projection and we have R0(x,S) = S for all x ∈ X0,S ⊆ X0.

3.3 Adding Equations

The main advantage of the second method is that, when building B
�
k+1, it refers

only to B
�
k

(and not also to B
�
0): this makes descriptions of quotients modulo further

equations easier. Suppose in fact that we are given some axioms Ax(L) for a logic L.
Following a suggestion by Coumans and van Gool [11], we can rewrite an axiom in
the form of a quasi-identity

t = 1 → v = 1 (5)

where the terms/formulae t,v have modal complexity less or equal to one (i.e.,
nested modal operators do not occur). To achieve this, one can repeat the following
‘flattening’ of quasi-equations E → v = 1 sufficiently many times (we start with
E = /0): take a subterm ✸v

� of v, pick a fresh variable x and replace E → v = 1 with
E ∪{x =✸v

�}→ v(x/✸v
�) = 1. Finally, quasi-identities having many premises can

be turned into single-premise quasi-identities by taking conjunctions.
The quasi-equations of this kind can be interpreted in a one-step modal algebra

(A0,A1, i0,✸0): once an assignment a of variables to members of A0 is given, we can
recursively define the element t

a ∈ A1 for every term t having modal complexity 0
or 1. An equation t = 1 of modal complexity at most 1 is valid in (A0,A1, i0,✸0) iff
t
a = 1 holds in A1 for every a; similarly one can define validity of quasi-equations.

Thus, an Ax(L)-one-step modal algebra is a one-step modal algebra where all quasi-
equations belonging to Ax(L) are valid; notice that this notion is relative not just to a
logic L, but to a set Ax(L) of quasi-equations (i.e. of inference rules) chosen in order
to axiomatize L.
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Validity of conditions like (5) can be forced by taking a quotient; since (5) is a
quasi-equation (and not just an equation), we need a quotient which is iterated: one
just quotients A1 by the filter generated by all v

a such that t
a = 1 holds in A1 (varying

a) and then repeats this procedure ω-times (or just sufficiently many finite times if
A1 is finite). In the end, one gets a one-step modal algebra (A0,A1/F,q◦ i0,q◦✸0)
(where F is the filter obtained in the end of the iteration and q : A1 → A1/F is the
canonical map onto the quotient) that satisfies (5) and is universal with this property.

We define a chain

B0
i
��
0−→ B

��
1 → · · ·→ B

��
k

i
��
k−→ B

��
k+1 → · · · (6)

of Boolean algebras equipped with semilattice morphisms

B0
✸0−→ B

��
1 → · · ·→ B

��
k

✸k−→ B
��
k+1 → · · · (7)

satisfying the conditions ✸k+1 ◦ i
��
k
= i

��
k+1 ◦✸k (equivalently, ✸T

k+1 ◦V (i��
k
) = i

��
k+1 ◦

✸T

k
) and such that for every k ≥ 0, the one-step modal algebra (B��

k
,B��

k+1, i
��
k
,✸k)

satisfies Ax(L). This is done by the same construction as in Proposition 6, with the
only difference that we also apply the aforementioned quotient by Ax(L); that is, we
define B

��
k+1 by taking a pushout

B
��
k
+V (B��

k−1)
V (B��

k
)

followed by a quotient by Ax(L). Let B
��
∞ be the colimit of this diagram. Then we

have:

Proposition 7. For each k ≥ 0, we have that ✸T

k+1 ◦ i
��
k
= i

��
k+1 ◦✸T

k
. Therefore, {✸T

k
:

k ≥ 0} can be extended to a map ✸T
∞ : V (B��

∞)→ B
��
∞, so that the algebra (B��

∞,✸∞) is

the n-generated free VL-algebra.

Proof. That (B��
∞,✸∞) is free is proved in the same way as in Proposition 6. That we

quotient each approximant by Ax(L) guarantees that (B��
∞,✸∞) satisfies Ax(L), and

hence is a VL-algebra.

What is not guaranteed in general here is that the maps i
��
k

are injective; this is
unavoidable, giving the fact that there are undecidable logics:

Proposition 8. If for each k ≥ 0 the maps i
��
k

: B
��
k
→ B

��
k+1 are injective, then B

��
k

is

isomorphic to a Boolean subalgebra of all terms of complexity k of the free VL-

algebra, and moreover the logic L is decidable.

Proof. Given terms t,u whose complexity is less than, say k, we can define their
canonical realizations [t], [u] ∈ B

��
∞ and [t]k, [u]k ∈ B

��
k

(this is quite straightforward
and intuitive, see, e.g., [20]); notice also that we have ιk([t]k) = [t] and ιk([u]k) = [u].
Under the obvious indentification of terms and propositional formulae, it is evident
that (since B

��
∞ is the free VL-algebra) [t] = [u] holds iff t ↔ u is provable in the logic
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L. Since ιk is a function, we have that [t]k = [u]k implies [t] = [u]; according to the
standard algebraic colimit construction, the converse is true in case the maps i

��
k̃

for
k ≤ k̃ are all injective, whence the claim of the proposition. The statement about
decidability is clear: to check whether an identity t = 1 holds, it is sufficient to inspect
whether [t]k = 1 holds, where k is the complexity of t.

The above relation [t]k = [u]k is quite interesting from the proof-theoretic point of
view: it means that it is possible to establish t ↔ u via a proof involving formulae
whose complexity does not exceed k. The existence of a proof whose complexity
is bounded by the size of the formula to be proved is an evidence for a nice proof-
theoretic behavior of the given axiomatization for a logic. It is also quite a desirable
property sufficient to entail decidability. Thus the above one-step algebraic approach
provides an intersting tool also from a purely proof-theoretic perspective.

From the dual point of view, one should try to understand in terms of dual one-step
frames what it means for a one-step algebra (A0,A1, i0,✸0) to satisfy a set of quasi-
equations (5). For this, one needs to develop the one-step correspondence theory.
The goal of this one-step correspondence theory is to characterize in the two-sorted
predicate language for one-step frames what it means for a one-step frame that the
dual one-step modal algebra satisfies Ax(L) (ideally, the characterization should be
manageable and possibly first-order).

Once this is understood, one has to understand further what it means from the dual
point of view to build a quotient making a one-step algebra (A0,A1, i0,✸0) an algebra
satisfying the quasi-equations (5) occurring in Ax(L). In view of the applications, it
is sufficient to characterize the case in which A0,A1 are both finite. Armed by this
characterization, if one is able to prove that the duals of the i

��
k

are surjective, one can
conclude that the logic is decidable. If the duals of the i

��
k

are not surjective, one can
try with a different axiomatization of the logic L. In conclusion, the duality task is
threefold:
(dt1) develop one-step correspondence theory;
(dt2) have a nice characterization of the dual of the following operation: take a

finite one-step algebra (A0,A1, i0,✸0) satisfying Ax(L), build the universal one-
step extension of it and make it a one-step algebra satisfying Ax(L) again (we call
this the one step-Ax(L)-extension of (A0,A1, i0,✸0));

(dt3) have a nice characterization of the dual of the following operation: take a
finite set X0, build the one-step modal algebra dual to the one-step frame (4) and
make it a one-step algebra satisfying Ax(L).

Usually (dt3) is quite easy, while (dt1)-(dt2) are different for each particular logic.
We will discuss some cases in detail below.
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4 Free K4-algebras

We start by considering task (dt1) for K4. As we will see, it is accomplished by
Proposition 9 below. We say that a one step-frame validates a quasi-equation if
the corresponding one-step modal algebra (℘(Y ),℘(X), f

∗,✸R) validates this quasi
equation.

Definition 3. A one-step frame (X ,Y, f ,R) is transitive if it validates the K4-quasi-
equation

a ≤✸b ⇒ ✸a ≤✸b (8)

i.e., if
f
∗(A)⊆✸R(B) ⇒ ✸R(A)⊆✸R(B) (9)

holds for all A,B ⊆ Y .

For S ⊆ X and x ∈ X , define Sx := {x̃ ∈ S | R(x̃)⊆ R(x)}.

Proposition 9. A one-step frame (X ,Y, f ,R) is transitive iff

y ∈ R(x) ⇒ f
∗(y)∩Xx �= /0 (10)

holds for all x ∈ X ,y ∈ Y .

Proof. Assume (10) and pick, A,B,x such that f
∗(A)⊆✸R(B) and x ∈✸R(A). The

goal is to show that x ∈ ✸R(B). From x ∈ ✸R(A), we get a y ∈ R(x)∩ A. Pick
z ∈ f

∗(y)∩Xx. Since f (z) = y ∈ A, we have z ∈ f
∗(A)⊆✸R(B), hence R(z)∩B �= /0,

giving also R(x)∩B �= /0 (because z ∈ Xx). Thus, x ∈✸R(B), as desired. Conversely,
assume (9) and pick y ∈ R(x). If f

∗(y)∩Xx is empty, then for every z ∈ f
∗(y), there is

w ∈ R(z) such that w �∈ R(x). Let A := {y} and let B be the complement of R(x). Then
f
∗(A)⊆✸R(B), hence ✸R(A)⊆✸R(B). Since y ∈ R(x), it follows that x ∈✸R(B),

i.e. that R(x)∩B is not empty, a contradiction because B is the complement of R(x).

If (X ,Y, f ,R) is a one-step frame, there is the largest X
� ⊆ X such that (X �,Y, f ,R)

is transitive: in fact, the set of all X̃ ⊆ X such that for all x ∈ X̃

∀y ∈ Y (y ∈ R(x) ⇒ f
∗(y)∩ X̃x �= /0)

(with f ,R restricted to X̃ in the domain) is closed under unions and hence has
the largest element X

�. A subframe of a one-step frame is obtained by restricting
functions and relations to some subset of a given frame. The largest subset X

� gives
rise to the one-step subframe (X �,Y, f|X� ,R|X�) (obtained by restricting f ,R to X

�

in the domain) that corresponds to the quotient modulo the quasi-equation (8). In
general, one cannot say more than that: we just need to characterize the one-step
subframe arising in tasks (dt2)-(dt3).

For (dt3) the situation is trivial: given any finite set X0, the one-step frame (4) is
already transitive, so the one-step transitive subframe we are looking for is the whole
one-step frame in this case.
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Task (dt2) requires to characterize the universal one-step K4-extension of a finite
transitive one-step frame (the universal one-step extension of a finite transitive one-
step frame is obviously defined to be the dual of the universal one-step K4-extension
of the corresponding dual finite one-step K4-algebra).

In short, we get the following notion. Given a transitive finite one-step frame
(X ,Y, f ,R), the universal one-step K4-extension of it is the largest transitive one-step
frame (X �,X , f

�,R�)⊆ (X �,X , f
�,R�), where X

�, f
�,R� are defined as follows

• X
� = {(x,S) ∈ X ×℘(X) | R(x) = f (S)};

• f
�(x,S) = x;

• R
�(x,S) = S.

According to the above definitions, X
� is the largest �X ⊆ X

� such that

(x,S) ∈ �X ⇒ (∀y ∈ S∃S
� ⊆ S (y,S�) ∈ �X). (11)

To fully accomplish task (dt2), we need here a better explicit characterization of X
�.

A subset S ⊆ X of a one-step frame (X ,Y, f ,R) is said to be transitive (abbrevi-
ated Tr(S)) if (S,Y, f|S,R|S) is a transitive one-step frame (by (−)|S we denote the
restriction of a relation or of a function to a subset S of its domain).

Proposition 10. X
� = {(x,S) | R(x) = f (S) & R(S)⊆ R(x) & Tr(S)}.

Proof. We must show that (i) X
� satisfies condition (11); (ii) if �X satisfies condi-

tion (11), then �X ⊆ X
�.

Ad (i): Take (x,S) ∈ X
� and y ∈ S. Define

S
� = {�y ∈ S | f (�y) ∈ R(y) & R(�y)⊆ R(y)}. (12)

We show that (y,S�) ∈ X
�. First, R(S�)⊆ R(y) and f (S�)⊆ R(y) are immediate from

the definition of S
�. To show that R(y)⊆ f (S�), notice that since S is transitive, for

all z ∈ R(y) there is yz ∈ S such that f (yz) = z and R(yz) ⊆ R(y). This shows that
z ∈ f (S�). It remains to show that S

� is transitive. Let �y ∈ S
� and w ∈ R(�y). Since

S
� ⊆ S and S is transitive, there is s ∈ S such that f (s) = w and R(s) ⊆ R(�y). We

only need to prove that s ∈ S
�, i.e. that (a) f (s) ∈ R(y) and (b) R(s) ⊆ R(y). Since

�y ∈ S
�, we have R(�y)⊆ R(y) and this implies f (s) ∈ R(y) (because f (s) = w ∈ R(�y)).

Thus, (a) holds. For (b), observe that �y ∈ S
� implies R(�y)⊆ R(y). Since we also have

R(s)⊆ R(�y), we obtain R(s)⊆ R(y), i.e. (b) holds.
Ad (ii): Let �X satisfy (11) and let (x,S) ∈ �X . We show that (x,S) ∈ X

�. To show
that R(S) ⊆ R(x), take y ∈ S. Then, according to (11), there is S

� ⊆ S such that
(y,S�) ∈ �X . Thus, R(y) = f (S�) ⊆ f (S) = R(x), and consequently, R(y) ⊆ R(x). So
R(S)⊆ R(x) (y ∈ S is arbitrary), as required. It remains to verify that S is transitive.
Consider y ∈ S and z ∈ R(y). Then there is S

� such that (y,S�) ∈ �X , which implies
R(y) = f (S�). Therefore, there is s ∈ S

� such that f (s) = z. However, R(S�) ⊆ R(y)
follows from (y,S�) ∈ �X (we just proved that this applies to all members of �X), hence
R(s)⊆ R(y).

The following proposition says that we can also apply Proposition 8 in this case.
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Proposition 11. If (X ,Y, f ,R) is a transitive finite one-step frame, then f
�

restricted

to X
�

is surjective.

Proof. It is sufficient to show that for every x ∈ X , we have that the pair (x,S) belongs
to X

�, where S is given by

S = {�y ∈ X | f (�y) ∈ R(x) & R(�y)⊆ R(x)}.

This follows from the fact that X is transitive (in the same way as case (i) above).

Let X0 be a 2n-element set and let

X1 = X0 ×℘(X0), Xk+1 = X
�
k
(k ≥ 1).

We also let fk : Xk+1 → Xk and Rk : Xk+1 →℘(Xk) be defined by fk(x,S) = x and
Rk(x,S) = S. Then using duality and Propositions 7, 8, 10, and 11 we arrive at the
following result (we refer to the statement of Theorem 1 for the indication of the
appropriate categories where limits below are taken in):

Theorem 2. The limit (Xω ,Rω) of the sequence {(Xk,Xk+1, fk,Rk) : k < ω} is (iso-

morphic to) the dual of the free n-generated K4-algebra. Moreover, each Xk is dual

to the algebra of all K4-equivalent terms of complexity k.

5 Free S4-algebras

We first deal with the T-case.

Definition 4. A one-step frame (X ,Y, f ,R) is reflexive if it validates the T-equation

a ≤✸a

i.e., if
f
∗(A)⊆✸R(A) (13)

holds for all A ⊆ Y .

Task (dt1) is accomplished by the following easy proposition:

Proposition 12. A one-step frame (X ,Y, f ,R) is reflexive iff

f (x) ∈ R(x) (14)

holds for all x ∈ X.

Proof. Suppose x ∈ f
∗(A) for some A ⊆Y . By (14), f (x)∈ R(x) and so R(x)∩A �= /0.

Thus, x ∈✸R(A), satisfying (13). Conversely, suppose x ∈ X is such that f (x) /∈ R(x).
Let A = X \R(x). Then f (x) ∈ A and R(x)∩A = /0. So x ∈ f

∗(A) and x /∈ ✸R(A).
Therefore, f

∗(A) �⊆✸R(A), refuting (13).
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Clearly the largest reflexive one-step subframe of a one-step frame (X ,Y, f ,R)
is obtained by taking the subset of X formed by those x such that f (x) ∈ R(x)
and by restricting f and R to it. This observation accomplishes also task (dt3).
For (dt2), we have an obvious notion of the universal one-step T-extension of a
reflexive one-step frame (X ,Y, f ,R). This is the largest reflexive one-step frame
(X �,X , f

�,R�)⊆ (X �,X , f
�,R�), where X

�, f
�,R� are defined as follows

• X
� = {(x,S) ∈ X ×℘(X) | R(x) = f (S)};

• f
�(x,S) = x;

• R
�(x,S) = S.

We immediately have that

Proposition 13. X
� = {(x,S) | R(x) = f (S) & x ∈ S}.

Proof. The proof is similar to the proof of Proposition 10. We must show that X
� is

the largest subset �X ⊆ X
� satisfying the condition

(x,S) ∈ �X ⇒ x ∈ S. (15)

But this immediately follows from the definition of X
�.

As a consequence, we obtain:

Proposition 14. If (X ,Y, f ,R) is a reflexive finite one-step frame such that f is sur-

jective, then f
�

restricted to X
�

is surjective.

Proof. Let x ∈ X . We need to find S ⊆ X such that R(x) = f (S) and x ∈ S. Let
S = f

∗(R(x)). Then, as f is surjective, we have f (S) = f ( f
∗(R(x))) = R(x). As X is

reflexive, by Proposition 12, f (x)∈ R(x). So x ∈ f
∗(R(x)) = S. Therefore, (x,S)∈ X

�

and f
�(x,S) = x. Thus, f

� is surjective.

Then if Xk’s, fk’s and Rk’s are as in the previous section (of course X
� is as in

Proposition 13), we have the following:

Theorem 3. The limit (Xω ,Rω) of the sequence {(Xk,Xk+1, fk,Rk) : k < ω} is (iso-

morphic to) the dual of the free n-generated T-algebra. Moreover, each Xk is dual to

the algebra of all T-equivalent terms of complexity k.

Finally, the relevant tasks for S4 are obtained by combining the above results
for T and K4. The combination is not entirely straightforward because we need
to carefully revisit all proofs. More precisely, the universal one-step S4-extension

of a reflexive and transitive one-step frame (X ,Y, f ,R) is the largest reflexive and
transitive one-step frame (X �,X , f

�,R�)⊆ (X �,X , f
�,R�), where X

�, f
�,R� are defined

as follows
• X

� = {(x,S) ∈ X ×℘(X) | R(x) = f (S)};
• f

�(x,S) = x;
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• R
�(x,S) = S.

We have:

Proposition 15. X
� = {(x,S) | R(x) = f (S) & R(S)⊆ R(x) & Tr(S) & x ∈ S}.

Proof. We can repeat word by word the proof of Proposition 10 (we only need to
observe that if (X ,Y, f ,R) is reflexive, then S

� as defined in (12) is such that y ∈ S
�).

Next we let the Xk’s, fk’s and Rk’s be the same as in the previous section with X
�

as in Proposition 15. Then, since we can prove surjectivity by the same argument
used in Proposition 11, we obtain the following:

Theorem 4. The limit (Xω ,Rω) of the sequence {(Xk,Xk+1, fk,Rk) : k < ω} is (iso-

morphic to) the dual of the free n-generated S4-algebra. Moreover, each Xk is dual

to the algebra of all S4-equivalent terms of complexity k.

6 Comparison to other approaches

In the recent literature, various approaches have been proposed in order to build free
modal algebras as chain colimits iterating some one-step construction. In the end, all
constructions must be isomorphic, however the differences they induce in the dual
combinatorics of finite frames might be significant, especially from the point of view
of concrete manageability and ease of manipulation. This is why it is worth trying
to make a closer comparison. The origins of the global step-by-step method for the
basic modal logic K go back to Abramsky’s 1988 British Logic Colloquium talk
(the paper [1] based on this talk appeared a decade later). In [20] a detailed account
of the global step-by-step method for K is given and, moreover, it is extended to
other modal logics. In [8] the same construction is put in the context of coalgebra,
underlying direct applications to rank one modal logics and is generalized to the
basic positive modal logic.

In [22] the step-by-step approach to the construction of free algebras is applied to
the S4 case. The solution adopted there is to build a chain of finite S4-algebras

(B0,✸0)
i0−→ (B1,✸1)→ · · ·→ (Bk,✸k)

ik−→ (Bk+1,✸k+1)→ · · · (16)

where the morphisms ik are continuous and relatively open, which means that they
fully preserve ‘old’ diamonds (i.e. diamonds of the kind ✸kik−1(a)) and just semi-
preserve ‘last’ (i.e. the other) diamonds. In essence, this means that in each algebra
there are ‘core’ diamonds that are defined once and for all and some other diamonds
that are defined ‘by completion’ in a temporary fashion. The merit of this construction
is that the duals of the (Bk,✸k) are relatively nicely defined preordered sets. However,
it is not clear how far this technique (implicitly relying on the existence of a kind
of ‘S4-completion by continuity’) can be pushed because its adaptation to general
logics looks unclear.
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To overcome this potential problem, in [11] free algebras are built up from a chain
like (16), where the algebras (Bk,✸k) are partial, i.e. diamonds are only partially
defined there. In addition, it is required that the image of ik is in the domain of the
next diamond ✸k+1. If we view a partial algebra (B,✸) as a pair

B0 ⊆ B, B0
✸−→ B

(where B0 is the Boolean subalgebra of B which is the domain of ✸), then it is clear
that

(B0,B, i,✸)

is a one-step modal algebra in our sense (here i is the inclusion morphism). This is
essentially the alternative description of partial algebras as described in [11, Remark
2.2]. The only difference is that our definition of a one-step modal algebra does not

require injectivity of i. This difference might be considered quite immaterial – and in
fact it is whenever one is able to prove that in the end the duals of the ik are surjective
maps (see Propositions 11,14). However, taking the injectivity requirement out is
essential for our recipe based on the tasks (dt1)-(dt2)-(dt3) to be formulated and
applied. Thus, this approach supplies an algebraic tool to investigate proof-theoretic
aspects, as explained in Proposition 8.

The step-by-step method for free Heyting algebras was first introduced in [19].
As an application of this method, it was shown that free finitely generated Heyting
algebras are in fact bi-Heyting algebras. In [7] a modular approach to this construction
was developed. It is similar to the local step-by-step approach of [11] and of the
current paper. It is our understanding that the technique of [7] can be rephrased in
terms of one-step Heyting algebras and the corresponding one-step frames.

7 Open problems

We conclude by listing some open problems. The basic question is whether the local
step-by-step method applies (or can be adjusted) to other important modal logics. As
possible candidates we suggest the logic wK4 = K+(✸✸p → p∨✸p) of weakly
transitive frames [13] or, more generally, the logics of n-transitive frames [29].

Another challenging test case is the provability logic GL. It is known that GL is
axiomatized over K4 by a one-step rule

(✷p ≤ p)→ (p = 1),

see [12] and [23]. Thus, the technique developed in Section 3 can be applied to GL.
Also [12] and [14] give a similar axiomatization of the logic Grz over K4 by the rule

(✷(p →✷p)≤ p)→ (p = 1).
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Strictly speaking this is not a one-step rule, but we can up to equivalence flatten the
rule to

(q = p →✷p) & (✷q ≤ p)→ (p = 1)

so that it fits our purposes. We leave it as an open problem whether free GL and
Grz-algebras could be described using the technique developed in this paper.

Finally, our results (Proposition 9 and 12) suggest that there might exist some
Sahlqvist-like correspondence for one-step frames. An investigation of this corre-
spondence is an interesting topic on its own, but it will also undoubtedly shed a new
light on the problem of obtaining free algebras for modal logics via the step-by-step
method.
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