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Abstract. We develop a semantic criterion for a specific rule-based calculus

Ax axiomatizing a given logic L to have the so-called bounded proof property.

This property is a kind of an analytic subformula property limiting the proof
search space. Our main tools are one-step frames and one-step algebras. These

structures were used in [23], [11] to construct free algebras of modal logics via

coalgebraic methods. In this paper, we use one-step algebras and one-step
frames to investigating proof-theoretic aspects of modal logics.

We define conservative one-step frames and prove that every finite conserva-
tive one-step frame for Ax is a p-morphic image of a finite Kripke frame for L iff

Ax has the bounded proof property and L has the finite model property. This

result, combined with a ‘one-step version’ of the classical correspondence the-
ory, turns out to be quite powerful in case studies. For simple logics such as K,

T, K4, S4, etc, establishing basic metatheoretical properties becomes a com-

pletely automatic task (the related proof obligations can be instantaneously
discharged by current first-order provers). For more complicated logics, some

ingenuity is still needed, however we were able to successfully apply our uni-

form method to Avron’s cut-free system for GL, to Goré’s cut-free system for
S4.3, and to Ohnishi-Matsumoto’s analytic system for S5.

This paper is a slightly extended version of the technical report published

in April 2013. The only changes are: a new title and new Sections 1.2 and 9.3.

1. Introduction

We revisit the method of describing free algebras of modal logics by approxi-
mating them with finite partial algebras. This construction is longstanding, but
here we apply it in a different context. We exploit it to investigate proof-theoretic
aspects of modal logics. The key points of the method are that every free algebra
is approximated by partial algebras of formulas of modal complexity n, for n ∈ ω,
and that dual spaces of these approximants can be described explicitly [1]1, [26].
In a sense, the basic idea of this construction can be traced back to [24]. In [25]
this method was applied to free Heyting algebras. In recent years there has been a
renewed interest towards this construction e.g., [9], [11], [12], [23], [27].

In this paper2 we study proof-theoretic consequences of this method for axiomatic
systems of modal logic. In particular, we will concentrate on the bounded proof
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property. An axiomatic system Ax has the bounded proof property (the bpp, for
short) if every formula φ of modal complexity at most n derived in Ax from some
set Γ containing only formulae of modal complexity at most n, can be derived from
Γ in Ax by only using formulae of modal complexity at most n. The bounded proof
property is a kind of an analytic subformula property limiting the proof search
space. It is an indicator of a robustness of a proof system, and hence is desirable
to have. This property holds for proof systems enjoying the subformula property
(the latter is a property that usually follows from cut elimination). The bounded
proof property depends on an axiomatization of a logical system. That is, one
axiomatization of a logic may have the bpp and the other not. The examples of
such axiomatizations will be given in Section 9 of the paper.

Main tools of our method are one-step frames introduced in [23] and [11]. A
one-step frame is a two-sorted structure which admits interpretations of modal
formulae without nested modal operators. We show that an axiomatic system Ax
axiomatizing a logic L has the bpp and the finite model property (the fmp) iff every
one step-frame validating Ax is a p-morphic image of a finite Kripke frame for L.
This gives a purely semantic characterization of the bpp. The main advantage of
this criterion is that it is relatively easy to verify. In Section 1.1 below, we give an
example explaining the details of our machinery step-by-step. Here we just list the
main ingredients.

Given an axiom of a modal logic, we rewrite it into a one-step rule, that is, a
rule of modal complexity 1. One-step rules can be interpreted on one-step frames.
We use an analogue of the classical correspondence theory, to obtain a first-order
condition (or a condition of first-order logic enriched with fixed-point operators)
for a one-step frame corresponding to the one-step rule. Finally, we need to find
a standard frame p-morphically mapped onto any finite one-step frame satisfying
this first-order condition. This part is not automatic, but we have some standard
templates. For example, we define a procedure modifying the relation of a one-step
frame so that the obtained frame is standard (Kripke). In easy cases, e.g., for modal
logics such as K, T, K4, S4, this frame is a frame of the logic and is p-morphically
mapped onto the one-step frame. The bpp and fmp for these logics follow by our
criterion. For more complicated systems such as S4.3, S5 and GL, we show that
the rules that we automatically obtain from some standard axiomatizations are
not good – we prove that these axiomatizations do not have the bpp, and, by our
criterion, do not admit cut elimination. However, we also show using our method,
that Avron’s cut-free rules for GL [2], Goré’s cut-free rules for S4.3 [30], and
Ohnishi-Matsumoto’s analytic rules for S5 [38] provide axiomatic systems having
the bpp.

In order to explain the basic idea of our technique, we proceed by giving a rather
simple (but still significant) example.

1.1. A worked out example. Consider the modal logic obtained by adding to
the basic normal modal system K the ‘density’ axiom:

(1) 22x→ 2x.

First Step: we replace (1) by equivalent derived rules having modal complexity 1.
The obvious solution is to replace the modalized subformulae occurring inside the
modal operator by an extra propositional variable. Thus the first candidate is the
rule y ↔ 2x/2y → 2x. A better solution (suggested by the proof of Proposition 3)
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is to take advantage of the monotonicity and to use instead the rule

(2)
y → 2x

2y → 2x

Often, the method suggested by the proof of Proposition 3 gives ‘good’ rules, but
for more complicated logics one needs some ingenuity to find the right system of
derived rules replacing the axioms (this is substantially the kind of ingenuity needed
to find rules admitting cut-elimination).

Second Step: this step may or may not succeed, but it is entirely algorith-
mic. It relies on a light modification of the well-known modal correspondence
machinery. We first observe that inference rules having modal complexity 1 can
be interpreted in the so-called one-step frames. A one-step frame is a quadruple
S = (W1,W0, f, R), whereW0,W1 are sets, f : W1 →W0 is a map and R ⊆W1×W0

is a relation between W1 and W0. In the applications, we need two further require-
ments (called conservativity requirements) on such a one-step frame S: for the
purpose of the present discussion, we may ignore the second requirement and keep
only the first one, which is just the surjectivity of f .3 Formulae of modal complexity
1 (i.e. without nested modal operators) can be interpreted in one-step frames as fol-
lows: propositional variables are interpreted as subsets of W0; when we apply modal
operators to subsets of W0, we produce subsets of W1 using the modal operator 2R
canonically induced by R. In particular, for y ⊆ W0 the operator 2R is defined as
2Ry = {w ∈ W1 : R(w) ⊆ U}, where R(w) = {v ∈ W0 : (w, v) ∈ R}, Whenever
we need to compare, say y and 2Rx, we apply the inverse image f (denoted by f∗)
to y in order to obtain a subset of W1. Thus, a one-step frame S = (W1,W0, f, R)
validates (2) iff we have

∀x, y ⊆W0 (f∗(y) ⊆ 2Rx⇒ 2Ry ⊆ 2Rx).

The standard correspondence machinery for Sahlqvist formulae shows that in the
two-sorted language of one-step frames this condition has the following first-order
equivalent:

(3) ∀w∀v (wRv ⇒ ∃k (wRf(k) & kRv)).

In relational composition notation this becomes R ⊆ R ◦ fo ◦ R, where fo is the
binary relation such that wfov if f(w) = v. We may call (3) the step-density
condition. In fact, notice that for standard frames, where we have W1 = W0 and
f = id, step-density condition becomes the customary density condition, see (6)
below.

Third Step: our main result states that both the finite model property and
bounded proof property (for the global consequence relation) are guaranteed pro-
vided we are able to show that any finite conservative one-step frame validating
our inference rules is a p-morphic image of a standard finite frame also validating
these rules. The formal definition of a p-morphic image for one-step frames will
be given in Section 6 (see Definition 10). Here we content ourselves to observing
that, in our case, in order to apply the above result and obtain the finite model
and bounded proof properties, we need to prove that, given a conservative finite
step-dense frame S = (W1,W0, f, R), there are a finite dense frame F = (V, S) and
a surjective map µ : V −→ W1 such that R ◦ µ = f ◦ µ ◦ S. In concrete examples,

3 The second requirement is needed to state our results in full generality, but seems not be
used in the applications.
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the idea is to take V := W1 and µ := idW1
. So the whole task reduces to that of

finding S ⊆W1 ×W1 such that R = f ◦ S. That is, S should satisfy

(4) ∀w∀v (wRv ⇔ ∃w′ (wSw′ & f(w′) = v)).

Some ingenuity is needed in the general case to find the appropriate S (indeed our
problem looks quite similar to the problem of finding appropriate filtrations case-
by-case). As in the case of filtrations, there are standard templates that often work
for the cases of arbitrary relations, transitive relations, etc. The basic template for
the case of an arbitrary relation is that of taking S to be fo ◦R, namely

(5) ∀w∀w′ (wSw′ ⇔ ∃v (wRv & f(w′) = v)).

Notice that what we need to prove in the end is that, assuming (3), the so-defined
S satisfies (4) and (6), where

(6) ∀w∀v (wSv ⇒ ∃k (kSv & wSk)).

Thus, taking into consideration that f is also surjective, i.e.,

(7) ∀v ∃w f(w) = v,

(because S is conservative), we need the validity of the implication

(7) & (3) & (5) ⇒ (4) & (6).

The latter is a deduction problem in first-order logic that can be solved affirmatively
along the lines indicated in Section 8 below. The problem can efficiently discharged
by provers like SPASS, E, Vampire.4

In summary, the above is a purely algorithmic procedure, that may or may not
succeed (in case it does not suceed, one may try to invent better solutions for the
derived rules of Step 1 and/or for the definition of the relation S in Step 3). In case
the procedure suceeds, we really obtain quite a lot of information about our logic,
because we get altogether: (i) completeness via finite model property; (ii) decid-
ability; (iii) bounded proof property; (iv) first-order definability; (v) canonicity (as
a consequence of (i)+(iv), via known results in modal logic). Further applications
concern the step-by-step descriptions of finitely generated free algebras (following
the lines of [23] and [11]). But we will not deal with free algebras in this paper.

The large amount of information that one can obtain from successful runs of the
method might suggest that the event of success is quite rare. This is true in essence,
but we shall see in the paper that (besides simple systems such as K,T,K4,S4)
the procedure can be successfully applied to more interesting case studies such as
the linear system S4.3, epistemic system S5 and the Gödel-Löb system GL. In
the case of GL we have definability not in first-order logic, but in first-order logic
enriched with fixed-point operators. However, for finite one-step frames (as for
finite standard GL-frames), this condition boils down to a first-order condition.

4 SPASS http://www.spass-prover.org/ (in the default configuration) took less than half a
second to solve the above problem: it derived 118 clauses, backtracked 23 clauses, performed 2

splits and kept 88 clauses; the proof produced has depth 5, length 47.

http://www.spass-prover.org/
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1.2. Related Work. Remarkable work has been conducted in the recent literature
on proof theory of non classical logics. The common effort of such work is to give
intrinsic algebraic and semantic characterizations of classical proof theoretic prop-
erties such as admissibility of cut-elimination and subformula properties. These
properties are crucial because they usually supply decidability and complexity re-
sults as a corollary of appropriately designing the reasoning systems. The origin of
our work is orthogonal to this research line, but there is certainly an overlap. As a
general observation, before going into more details, we must say that our techniques
have more restricted target (we say little about the concrete design of proof systems
and the bpp itself is a rather weak form of analyticity, see Section 3 below for a
comparison to analogous notions from the literature). However, at the same time,
we point out that our techniques look robust and are widely applicable. This is
because they are almost independent on syntactic presentations, in the sense that
the only syntactic feature they are sensible to is the modal complexity of the infer-
ence rules. Our success in the case studies we present in Section 9 (and in many
other examples the readers can easily build by themselves) should give evidence to
these merits of our methodology. Here we analyse three different recent research
lines concerning structural investigation on basic proof theoretic properties.

1. An algebraic approach to cut elimination via MacNeille completions for the
full Lambek calculus FL was developed in [16–18]. The results are impressive
(they relate cut-elimination with preservation under McNeille completions), but
they cover just the lowest levels N2,P3 of the so-called substructural hierarchy.
Notice also that full Lambek calculus is a non-distributive substructural logic and
that the above mentioned class of axioms can include only some intermediate logics.
The framework of our paper is different, as we work with modal logics which are
distributive and extend classical logic. In addition, our technique is based not on
completions, but on (finite) duality between distributive algebras and frames.

2. The paper [4] characterizes analyticity (and cut-elimination) from a semantic
point of view and as such might be related to our research perspective. However,
the semantic framework introduced in [4] is quite peculiar because it is syntax-
dependent: in fact, the G-legal frames of [4] are defined in terms of a specific
calculus G (not just in terms of a specific modal language). G-legal E-semiframes
are also defined in terms of a set of formulae E . The semantic characterization of
analyticity so-obtained seems to work well for basic standard modal systems but
not, for instance, for GL.

3. Papers [34–36] contain interesting achievements from the syntactic side and
as such might complement our work. Translations and rule saturation transforma-
tions are investigated so to produce out of Hilbert-style axiomatizations contextual
sequent calculi enjoying cut and contraction admissibility properties. The method
is quite successful for modal rank 1 axioms, but occasionally also for more complex
logics.

1.3. Organization of the paper. The paper is organized as follows: In Section 2
we recall the basic definitions of logics and decision problems. In Section 3 we
introduce derivable rules, reduced rules and the bounded proof property. Section 4
discusses conservative one-step modal algebras and one-step frames. In Section 5
we define diagrams of one-step modal algebras and show that diagrams encode the
embeddings of one-step modal algebras. Section 6 gives a semantic criterion for a
proof system to enjoy the bounded proof property and finite model property. In
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Section 7 we discuss the correspondence theory for one-step frames. In Section 8
we give a few simple illustrative examples of our approach. Finally, in Section 9
we discuss in detail more sophisticated case studies concerning the modal systems
S4.3, GL, S5.

2. Logics and Decision Problems

Modal formulae are built up from propositional variables x, y, . . . by using the
Booleans (¬,∧,∨,→, 0, 1) and modal operators (3,2). For simplicity, we take ¬,
∧, 3 as primitive connectives, the remaining ones being defined in the customary
way (in particular, 2 is defined as ¬3¬). We shall also use parameters a, b, . . .
instead of variables whenever we want to stress that uniform substitution does not
apply to them. Underlined letters stand for tuples of unspecified length and formed
by distinct elements, thus for instance, we may use x for a tuple such as x1, . . . , xn.
When we write φ(x) we want to stress that φ contains at most the variables x
(and no parameters) and similarly when we write φ(a) we want to stress that φ
contains at most the parameters a (and no variables). The same convention applies
to sets of formulae: if Γ is a set of formulae and we write Γ(a), we mean that all
formulae in Γ are of the kind φ(a), etc. We may occasionally replace variables with
parameters in a formula: for this, we use the following self-explanatory notation.
For a formula φ(x) we write φ(a) to mean that φ(a) is obtained from φ(x) by
replacing x = x1, . . . , xn (simultaneously and respectively) by a = a1, . . . , an.

The modal complexity of a formula φ counts the maximum number of nested
modal operators in φ (the precise definition is by an obvious induction). The po-
larity (positive/negative) of an occurrence of a subformula in a formula φ is defined
inductively: φ is positive in φ, the polarity is conserved through all connectives,
except ¬ that reverses it. When we say that a propositional variable is positive
(negative) in φ we mean that all its occurrences are such.

A logic is a set of modal formulae containing tautologies, Aristotle’s principle
(namely 2(x → y) → (2x → 2y)) and closed under uniform substitution, modus
ponens and necessitation (namely φ/2φ) rules.

Logics are in bijective correspondence with varieties of modal algebras. We recall
the related definitions here, see e.g., [13, Sec. 5.2] or [14, Sec. 7.6] for more details.
A modal algebra A = (A,3) is a Boolean algebra A endowed with a unary operator
3 satisfying 3(x ∨ y) = 3x ∨3y,30 = 0. Notice that, here and elsewhere, we use
the same name for a connective and the corresponding operator in modal algebras
(thus, for instance, 0 is zero, ∨ is join, etc.). In this way, propositional formulae
can be identified with terms in the first order language of modal algebras. Thus,
the well-known bijective correspondence between logics L and varieties V of modal
algebras can be stated as follows: (i) to a logic L, one can associate the variety
V (L) = {A | for all φ ∈ L, A |= ∀xφ(x) = 1}; (ii) to a variety V , we associate the
logic L(V ) = {φ(x) | for all A ∈ V, A |= ∀xφ(x) = 1}.

From the semantic side, we have the notion of a frame; a frame F = (W,R) is
a set W endowed with a binary relation R. The dual of the frame F = (W,R) is
the modal algebra F∗ = (℘(W ),3R), where ℘(W ) is the powerset Boolean algebra
and 3R is the semilattice morphism associated with R. The latter is defined as
follows: for A ⊆ W , we have 3R(A) = {w ∈ W | R(w) ∩ A 6= ∅} (recall that
R(w) denotes {v ∈ W | (w, v) ∈ R}). Definitions regarding modal algebras can
be shifted to frames by taking duals: for instance, we say that ψ is valid in F iff
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F∗ |= ∀xφ(x) = 1, that F validates a logic L (or that F is a frame for L) iff F∗

validates all the formulae in L, etc. It should be noticed that there is a real duality
(in the categorical sense) between modal algebras and frames only if we restrict
to finite modal algebras and finite frames. If we want a full duality working for
arbitrary modal algebras, we must introduce some topological structures on our
frames (see, e.g., [13, Sec. 5.5], [14, Sec. 7.5], [32, Ch. 4] or [41]). For the purposes
of this paper, however, the duality between finite frames and finite modal algebras
will suffice.

The kind of decision problems we are interested in for a logic L is the global
consequence relation decision problem. This can be formulated as follows: given
parameters a, a finite set Γ(a) = {φ1(a), . . . , φn(a)} of propositional formulae and
given a formula ψ(a), decide whether we have Γ `L ψ, where the notation Γ `L ψ
means that there is a proof of ψ using tautologies, Aristotle’s principle and the
formulae in Γ, as well as the necessitation, modus ponens and the axioms of L
(notice that uniform substitutions cannot be applied to formulae in Γ), see e.g.,
[32, Sec. 3.1]. In terms of the variety associated with a logic, the global consequence
relation problem can be rephrased as follows.

Proposition 1. Given a logic L, for any finite Γ(a), ψ(a) as above, we have that
Γ `L ψ holds iff for all A ∈ V (L) we have

(8) A |= ∀x (
∧
{φ(x) = 1 | φ ∈ Γ} ⇒ ψ(x)=1).

Proof. We just sketch the main idea of the proof. First notice that in the quasi-
equation (8), the parameters have been replaced by variables that are universally
quantified. One side of the proposition is proved by induction on the length of a
proof; the other side, by the standard Lindembaum algebra-like construction. For
this one introduces the equivalence relation ≈ on formulas such that ψ1(a) ≈ ψ2(a)
holds iff Γ `L ψ1 ↔ ψ2. The set of formulae of the kind ψ(a) are quotiented by ≈,
and operations are defined on the representatives of equivalence classes. Finally,
assuming Γ 6`L ψ, one obtains an algebra A ∈ V (L), where the quasi-equation (8)
fails. a

3. Inference Rules

In proof theory, logics are specified via axiomatic systems consisting of infer-
ence rules (axioms are viewed as 0-premises rules). However, different axiomatic
systems may specify the same logic, as will follow from the notion of a derivable
rule introduced below. Our goal is to recognize axiomatic systems having suitable
proof-theoretic properties. To this aim, we make a preliminary investigation about
inference rules.

Formally, an inference rule is an n+ 1-tuple of formulae, written in the form

(9)
φ1(x), . . . , φn(x)

ψ(x).

The φ’s are the premises and ψ is the consequence of the rule. An axiomatic
system Ax is a set of inference rules. We write `Ax φ to mean that φ has a proof
using tautologies and Aristotle’s principle as well as modus ponens, necessitation
and inferences from Ax. When we say that a proof uses an inference rule such
as (9), we mean that the proof can introduce at any step i a formula of the kind
ψσ provided it already introduced in the previous steps j1, . . . , jn < i the formulae
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φ1σ, . . . , φnσ, respectively. Here σ is a substitution and notation ψσ means the
application of the substitution σ to ψ.

Given parameters a, a finite set Γ = {φ1(a), . . . , φn(a)}, an inference system Ax
and a formula ψ(a), we write Γ `Ax ψ to mean that ψ has a proof using tautologies,
Aristotle’s principle and formulae from Γ as well as modus ponens, necessitation
and inferences from Ax (notice that uniform substitution cannot be applied to to
members of Γ).

A modal algebra A validates the rule (9) iff

(10) A |= ∀x (φ1(x)=1 & · · ·& φn(x)=1⇒ ψ(x)=1)

and it validates an axiomatic system iff it validates all inference rules in it.
We need some care when dealing with inference rules. In fact, it is clear from

the above definitions that the class of algebras validating an axiom system is only
a quasi-variety, whereas we are mainly interested in varieties (i.e., in logics). We
need to introduce a notion recognizing equivalent axiomatic systems. This will
allow us to safely limit ourselves, in case we are interested in a specific logic L,
only to axiomatic systems that are equivalent to L. The notion of equivalence we
require should be well behaved with respect to the decision problem (aka global
consequence relation) we are interested in, in the sense that we must have Γ `Ax ψ
iff Γ `Ax′ ψ whenever Ax and Ax′ are equivalent. The key concept leading to the
appropriate notion of equivalence is that of a derivable rule.5 This is an inference
rule satisfying one of the equivalent conditions of the next proposition.

Proposition 2. Let Ax be an axiomatic system. The following conditions are
equivalent for an inference rule φ1(x), . . . , φn(x)/ψ(x).

(i) Every modal algebra validating Ax validates also φ1(x), . . . , φn(x)/ψ(x);
(ii) {φ1(a), . . . , φn(a)} `Ax ψ(a).

Proof. This proposition is essentially an extension of Proposition 1 from variaties
to quasi-varieties and it is proved in the same way. The direction from (i) to
(ii) is via a Lindembaum-like algebra construction (we take all formulae of the
kind θ(a) and divide them by the equivalence relation induced by the relation
{φ1(a), . . . , φn(a)} `Ax θ(a)↔ θ′(a), etc.). The direction from (ii) to (i) is a validity
statement to be checked by induction on the length of a proof: what has to be
checked is that, if we are given a modal algebra A validating Ax and elements from
its support interpreting the parameters a in such a way that φ1(a) = 1, . . . , φn(a) =
1 hold, then whenever we have {φ1(a), . . . , φn(a)} `Ax θ(a) we also have that
θ(a) = 1 holds. Once this is shown, applying it to the special case where θ is ψ,
we obtain that A validates φ1(x), . . . , φn(x)/ψ(x) (because the elements assigned
to the x are arbitrary elements from the support of A). a
Remark 1. In case Ax is a set of axioms (i.e. a set of 0-premises rules) one can
add a further characterization to (i)-(ii) (which is in fact a deduction theorem):

(iii) There exists m ≥ 0, k1, . . . , km ≥ 0 and φi1 , . . . , φim ∈ {φ1(x), . . . , φn(x)}
such that `Ax 2k1φi1 ∧ · · · ∧2kmφim → ψ.

This characterization is useful in concrete examples to check derivability of inference
rules with respect to a given logic.

5In contrast to derivable rules, admissible rules [40] are not appropriate, because they might
have impact on global consequence relation. To see why this can be the case, recall that admissible

rules are validated only by free algebras.
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We say that two axiomatic systems Ax and Ax′ are equivalent iff all inference
rules from Ax are derivable in Ax′ and vice versa. We say that Ax axiomatizes L
iff Ax is equivalent to L (as an axiomatic system). From the previous proposition,
we obtain that the above notion of equivalence is correct for our decision problems.

Corollary 1. If Ax is equivalent to Ax′, then we have Γ(a) `Ax ψ(a) iff Γ(a) `Ax′

ψ(a) for all a,Γ(a), ψ(a).

Proof. By Proposition 2, Γ(a) `Ax ψ(a) is equivalent to the fact that the rule
∀x (

∧
Γ(x) → φ(x)) is validated in all the algebras validating the rules from Ax.

The same holds for Ax′ and then the claim is clear because Ax and Ax′ are equiv-
alent. a

Now we are going to discuss the assumptions we can freely make on a given
axiomatic system.

Definition 1. We say that the inference rule (9) is reduced iff (i) the formulae
φ1, . . . , φn, ψ have modal complexity at most 1; (ii) every propositional variable oc-
curing in (9) has an occurrence within the scope of a modal operator. An axiomatic
system is reduced iff all inference rules in it are reduced.

Requirement (ii) above is useful in order to make more intuitive the definition of
interpretation of a reduced axiomatic system into a one-step algebra. On the other
hand, the proof of Proposition 3 below shows that propositional variables violating
requirement (ii) can be dropped, so that requirement (ii) is also formally justified.

Proposition 3. Every axiomatic system is equivalent to a reduced axiomatic sys-
tem.

Proof. We show how to replace every rule (9) by one or more reduced rules so as to
obtain an equivalent axiomatic system. Take a formula α having modal complexity
at least one and take an occurrence of it located inside a modal operator in (9). We
can obtain an equivalent rule by replacing this occurrence by a new propositional
variable y and by adding as a further premise α→ y (resp. y → α) if the occurrence
of α is positive within ψ or negative within one of the φi’s (resp. if the occurrence
of α is negative within ψ or positive within one of the φi’s). Continuing in this way,
in the end, only formulae of modal complexity at most 1 will occur in the rule. To
check the equivalence of so-obtained axiomatic systems, use Proposition 2(i).

Now suppose that a propositional variable x does not occur inside a modal oper-
ator in (9). By rewriting into the conjunctive normal form and separating conjuncts
(we can split premises or the whole rule, depending on whether conjunctions are in
the premises or in the conclusion), we can assume that premises and conclusions
are disjunctions of propositional variables and of formulae whose main connective
is a modal operator. Now, if x does not occur inside a modal operator, premises
and conclusion containing it must be of the form x → α or β → x, where x does
not occur in α, β. But then x can be easily eliminated: for instance, observe that
x→ α, β → x/x→ γ is equivalent, as a rule, to β → α/α→ γ.6 a

Based on the above proposition, from now on we shall consider only reduced
inference rules and reduced axiomatic systems.

6There is also another (trivial and not informative) way to force requirement (ii): if x does not
occur inside a modal operator in (9), just add to the rule a further premise like 2(x ∨ ¬x).
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Remark 2. The transformation of an axiomatic system into a reduced one can be
done in different ways. The way we suggested in the proof of Proposition 3 seems
to be well behaved in the examples (in the sense that it helps the application of the
Ackermann rules in the correspondence phase, see Section 7 below). To obtain even
better results, whenever possible, it is convenient to abstract out an occurrence of
a subformula α from the conclusion only in case α has another occurrence in the
conclusion of the rule (in this way, one can hope to get in the end a rule which is
suitable for proving the subformula property in case cut-elimination holds). Notice
that the method we suggested in the proof of Proposition 3 is non deterministic, so
it might be applied in different ways with possibly different outcomes. We also point
out that further improvements should be investigated for syntactic transformations
of axiomatic systems. In particular, one could try to apply a saturation process to
the current set of rules: the proof-theory oriented literature [16,17,34–36] developed
interesting techniques for this. These techniques were originally tailored to design
sequent systems where rules such as cut and contraction are admissible, but could
be profitably imported in our context too.

The global consequence relation Γ `Ax φ does not depend on the axiomatic
system Ax chosen for a given logic L. Indeed, Γ `Ax φ holds iff Γ `L φ holds for
any axiomatic system equivalent to L, see Corollary 1. However, deciding Γ `Ax φ
might be easier for ‘nicer’ axiomatic systems. In particular, the bounded proof
property below may hold only for some ‘nice’ axiomatic systems equivalent to a
logic L.

When we write Γ `nAx φ we mean that φ can be proved from Ax,Γ (in the above
sense) by using a proof in which only formulae of modal complexity at most n occur.

Definition 2. We say that Ax has the bounded proof property (bpp, for short) iff
for every formula φ of modal complexity at most n and for every Γ containing only
formulae of modal complexity at most n, we have

Γ `Ax φ ⇒ Γ `nAx φ.

It should be clear that the bpp for a finite axiom system Ax equivalent to L
implies the decidability of the global consequence relation for L. This is because
we have a bounded search space for formulae occurring in a possible proof and for
possible substitutions instantiating our rules: in fact, there are only finitely many
non provably equivalent formulae containing at most a given finite set of parameters
and with modal complexity bounded by a given n (notice that in a proof witnessing
Γ(a) `nAx φ(a) we can freely suppose that only the paramters a—and no variables—
occur, because extra parameters or variables can be uniformly replaced by, say, 0).

Remark 3. The bpp is similar in spirit to the analyticity [4] and to the pseudo-
analyticity [34] properties considered in the literature; however, it is different than
those properties because the class of formulae allowed to occur in a restricted shape
proof witnessing Γ `Ax φ is not the same. According to the bpp, if Γ(a), φ(a) have
modal complexity n, any formula ψ(a) of modal complexity at most n is allowed to
occur in such a proof, whereas just subformulae of Γ, φ (according to the analitic
restriction) or Boxed Boolean combinations of subformulae of Γ, φ (according to
the pseudo-analytic restriction) are allowed to occur there.

The following proposition shows that we can limit our consideration to formulae
of complexity 1 when checking the bpp.
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Proposition 4. Ax has the bounded proof property iff for every formula φ of modal
complexity at most 1 and for every Γ containing only formulae of modal complexity
at most 1, we have

Γ `Ax φ ⇒ Γ `1
Ax φ.

Proof. For the purpose of this proof only, we need to apply substitutions to
parameters too. To avoid confusion, we shall call such substitutions replacements.
Formally a replacement σ is a map associating with ai a formula σ(ai) (for i =
1, . . . ,m). We denote by θσ the result of the simulataneous replacement in θ of
ai by σ(ai). We define the modal complexity of σ to be the maximum of the
complexities of the formulae σ(ai). Notice as a general fact that

(*) if σ has modal complexity at most k and φ has modal complexity at most
l, then φσ has modal complexity at most k + l.

Given our Γ, φ of modal complexities at most n, we define Γi, φi, σi (0 ≤ i ≤ n−1)
such that: (i) σi has modal complexity at most 1 and Γi, ψi have modal complexities
at most n − i; (ii) φi+1σi+1 = φi; (iii) Γi+1σi+1 is equal to the union of Γi with
some tautologies of modal complexity at most 1; (iv) Γi+1 `Ax φi+1 iff Γi `Ax φi.

We let Γ0 be Γ, φ0 be φ and σ0 be the identity replacement. To define the
i + 1-th data, consider all subformulae of the kind 3ψ occurring in Γi, φi, where
ψ has complexity 0. For each such subformula, pick a fresh parameter aψ, replace
everywhere 3ψ by aψ in Γi, φi. Then add aψ ↔ 3ψ to Γi and let σi+1 be given by
{aψ 7→ 3ψ}ψ. Hence Properties (i)-(iv) hold.

Now suppose that Γ `Ax φ. Then we have Γn−1 `Ax φn−1 by (iv) and also
Γn−1 `1

Ax φn−1 by (i) and the hypothesis of the proposition. Next, if we apply σn−1

to the proof certifying Γn−1 `1
Ax φn−1, by (ii)-(iii) and (*), we obtain Γn−2 `2

Ax

φn−2. Repeating this for σn−1, . . . , σ1, we finally obtain Γ `nAx φ. a

In the following, we shall adopt the equivalent formulation of the bpp suggested
by the above proposition. We shall call finite sets Γ(a) of formulae of modal com-
plexity at most 1, finite presentations.

Remark 4. We do not consider complexity problems in this paper. However, we
underline that the transformation outlined in the proof of Proposition 4 produces a
global consequence relation problem whose length is linear in terms of the original
problem. This is because the length of each Γi, φi increases the length of the
previous Γi−1, φi−1 by at most 4 symbols (counting ↔ as a single symbol). Thus,
although it may seem that a decision procedure based on the bpp requires non-
elementary space search bound, this is not true: the space bound can be lowered
to an elementary bound if we apply the above mentioned transformation.7

Remark 5. One may think that the necessitation rule does not play a prominent
role in a proof witnessing Γ `1

Ax φ, but this is not the case at all. Suppose that Γ
contains 2a1 ↔ a2,2a2 ↔ a3, . . . . Then, if it happens that we deduce a1, we can
obtain also 2a1, then a2, 2a2, a3, 2a3, etc. Thus, the necessitation rule can have
a prominent role even though the modal complexity of the formulae managed by
the proof remains very low.

7 Counting the number of non-equivalent formulae of modal complexity at most 1 in a given

number of propositional variables [26], we obtain in this way a triple exponential bound for the

search space of formulae occurring in a possible proof. This bound is still far from optimal when
considering concrete systems (we believe it can be improved by further refining the complexity

analysis).
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4. Step algebras and step frames

The aim of this section is to supply an algebraic and a semantic framework for
investigating proofs and formulae of modal complexity at most 1.

4.1. Conservative one-step algebras and one-step frames. We first recall
the definition of one-step modal algebras and one-step frames from [23] and [11],
and define conservative one-step modal algebras and one-step frames.

Definition 3. A one-step modal algebra is a quadruple A = (A0, A1, i0,30), where
A0, A1 are Boolean algebras, i0 : A0 → A1 is a Boolean morphism, and 30 : A0 →
A1 is a semilattice morphism (i.e., it preserves only 0,∨). The algebras A0, A1

are called the source and the target Boolean algebras of the one-step modal algebra
A. We say that A is conservative iff i0 is injective and the union of the images
i0(A0) ∪3(A0) generates A1 as a Boolean algebra.

From the dual semantic point of view we have the following:

Definition 4. A one-step frame is a quadruple S = (W1,W0, f, R), where W0,W1

are sets, f : W1 → W0 is a map and R ⊆ W1 ×W0 is a relation between W1 and
W0. We say that S is conservative iff f is surjective and the following condition is
satisfied for all w1, w2 ∈W1:

(11) f(w1) = f(w2) & R(w1) = R(w2) ⇒ w1 = w2.

Above, similarly to the case of Kripke frames, we used the notation R(w1) to
mean the set {v ∈ W0 | (w1, v) ∈ R} (and similarly for R(w2)). The dual of
a finite one-step frame S = (W1,W0, f, R) is the one-step modal algebra S∗ =
(℘(W0), ℘(W1), f∗,3R), where f∗ is the inverse image operation and 3R is the
semilattice morphism associated with R. The latter is defined as follows: for A ⊆
W0, we have 3R(A) = {w ∈ W1 | R(w) ∩ A 6= ∅}. Conservativity also carries over
from one-step frames to one-step modal algebras.

Proposition 5. A finite one-step frame S is conservative iff its dual one-step modal
algebra S∗ is conservative.

Proof. The following is an easily established fact concerning any finite Boolean
algebra ℘(X): a family of subsets G ⊆ ℘(X) generates ℘(X) as a Boolean algebra
iff the following holds for w1, w2 ∈ X

∀g ∈ G (w1 ∈ g ⇔ w2 ∈ g)⇒ w1 = w2.

If we now apply this to the family

{f∗(v) | v ∈ Y } ∪ {2R(Y \ {v}) | v ∈ Y }

we obtain precisely the statement of the lemma (here, of course, 2R is taken to be
¬3R¬). a

To complete our list of definitions, let us observe that a one-step modal algebra
A = (A0, A1, i0,30) in which we have A0 = A1 and i0 = id is nothing but a modal
algebra. Similarly, a one-step frame S = (W1,W0, f, R) where we have W0 = W1

and f = id is just a frame. For clarity, we shall sometimes call modal algebras and
frames standard or plain modal algebras and frames, respectively.
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4.2. Inference Validation in Step Algebras. We spell out what it means for a
one-step modal algebra and a one-step frame to validate an axiomatic system Ax
and a finite presentation Γ. Notice that only formulae of modal complexity at most
1 are involved, according to our conventions from Section 3.

Let us fix a finite set of variables x = x1, . . . , xn and a finite set of parameters
a = a1, . . . , am (either x or a can be empty). An a-augmented one-step modal
algebra A = (A0, A1, i0,30, a) is a one-step modal algebra together with displayed
elements a = a1, . . . , am ∈ A0 (these elements will interpret parameters).

Given an a-augmented one-step modal algebra as above, an A-valuation is a
map associating with each variable x an element v(x) ∈ A0. For every formula φ
of complexity 0, we define φv0 ∈ A0 as follows:

xv0 = v(x) (for every variable x); av0i = ai (ai ∈ a);

(φ ∗ ψ)v0 = φv0 ∗ ψv0 (∗ = ∧,∨); (¬φ)v0 = ¬(φv0).

For every formula φ of complexity 0, we define φv1 ∈ A1 as i0(φv0). For φ of
complexity 1, φv1 ∈ A1 is defined as follows:

(3φ)v1 = 3(φv0); (φ ∗ ψ)v1 = φv1 ∗ ψv1 (∗ = ∧,∨); (¬φ)v1 = ¬(φv1).

Definition 5. We say that A validates the inference rule (9) iff for every A-
valuation v,8 we have that if (φv11 = 1 and · · · and φv1n = 1), then ψv1 = 1. We
say that A validates an axiomatic system Ax (written A |= Ax) iff A validates all
inferences from Ax.

Notice that it might well be that Ax1,Ax2 both axiomatize the same logic L,
but that only one of them is validated by a given A. This phenomenon, however,
cannot happen in case A is standard (i.e., it is a modal algebra).

For formulae φ(a) where the variables x do not occur, the valuation v is not
relevant. Thus, in such cases, we may write φa0, φa1 instead of φv0, φv1, respectively,
to stress the fact that the augmentation a is the essential part of the definition.
We write A |= φ(a) for φa1 = 1. We say that A validates the presentation Γ (in
symbols, A |= Γ(a)) iff we have that A |= φ(a) for all φ(a) ∈ Γ.

The notion of an S-valuation for a one-step frame S is the expected one, namely
v is an S-valuation iff it is an S∗-valuation. In the same way the other notions
introduced above (augmentation, φv0, φv1, validation of a presentation, of an infer-
ence, of an axiomatic system) can be extended by duality to one-step frames. We
shall turn on valuations in one-step frames in Section 7.

We can specialize the above notions to standard modal algebras and frames.
An a-augmentation in a modal algebra A = (A,3) is a tuple a of elements from
the support of A, matching the length of a. For frames F = (W,R), we dually
take a tuple from ℘(W ), i.e., a tuple of subsets. Given such a-augmentation, we
can define A |= Γ(a) and F |= Γ(a) for a presentation Γ(a), just specializing the
above definitions (standard modal algebras and frames are special one-step modal
algebras and frames). Notice that F |= Γ(a) is global validity in terms of the Kripke
forcing from the modal logic literature, see e.g., [32, Sec. 3.1].

Lemma 1. Let A = (A,B, i,3, a) be an augmented conservative one-step modal
algebra that validates the axioms Ax and the presentation Γ(a). Then Γ `1

Ax ψ(a)
implies A |= ψ(a).

8Recall that our inference rules are all reduced: in view of this fact, we used A0 as the codomain
of our valuations v.
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Proof. Let φ1, . . . , φn be the proof of ψ witnessing Γ `1
Ax ψ. Notice that all

formulae in such a proof must have modal complexity at most one. In addition, we
can freely suppose that variables do not occur in the proof. If they are there, they
can be replaced by a tautology, still obtaining a proof witnessing Γ `1

Ax ψ, because
variables do not occur in Γ, ψ. Then each φi belongs to Γ or is obtained from the
previous φi’s by applying the rules of Ax, modus ponens and necessitation.

The cases of modus ponens is easy. Now assume that φj is obtained from φi
by applying the rule of necessitation. Then φi is of complexity 0 (otherwise the
complexity of φj will be greater than one) and φj is 2φi. The induction hypothesis
yields A |= φi, that is φa1i = 1, and i(φa0i ) = 1. Since A is conservative, i is injective,
which yields φa0i = 1, thus (2φi)

a1 = 2φa0i = 1 and finally A |= φj .
For the case of inference rules, we use the fact that rules are reduced. In

fact, suppose that φi is obtained from φi1 , . . . , φim by applying the reduced rule
ψ1, . . . , ψm/ψ ∈ Ax. This means that for some substitution σ, we have that
φi1 , . . . , φim coincide with ψ1σ, . . . , ψmσ and φi coincides with ψσ. Since every
propositional variable occurring in the rule must have an occurrence inside a 3 and
the formulae occurring in the proof have modal complexity at most 1, the substitu-
tion σ must map variables to formulae of complexity 0. In other words, if x1, . . . , xl
are the variables occurring in ψ1, . . . , ψm, ψ, we have that σ(xi) = θi(a) where the θi
have modal complexity 0 (1 ≤ i ≤ l). If we take a valuation w such that w(xi) = θa0i
(1 ≤ i ≤ l), we can easily check by induction that, for every θ of complexity less or
equal to 1, we have that θw1 is equal to (θσ)a1. Thus, from the induction hypothesis
we have (ψ1σ)a1 = 1, . . . , (ψmσ)a1 = 1, that is ψw1

1 = 1, . . . , ψw1
m = 1. Since A

validates the rules, we must have that 1 = ψw1 = (ψσ)a1 = φa1i , namely A |= φi. a

5. Embeddings and Extensions

In this section we introduce the morphisms of one-step modal algebras and one-
step frames. We also define the notion of a diagram of a finite one-step algebra and
prove that the diagram encodes the embedability of this one-step modal algebra
into other one-step modal algebras.

Definition 6. An embedding between one-step modal algebras A = (A0, A1, i0,30)
and A′ = (A′0, A

′
1, i
′
0,3

′
0) is a pair of injective Boolean morphisms h : A0 −→ A′0,

k : A1 −→ A′1 such that

(12) k ◦ i0 = i′0 ◦ h and k ◦30 = 3′0 ◦ h .

A0 A′0

A1 A′1
k

i′0

h

i0
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A0 A′0

A1 A′1
k

3′0

h

30

Notice that, when A′ is standard (i.e. A′1 = A′0 = and i′0 = id), h must be k ◦ i0
and (12) reduces to

(13) k ◦30 = 3′0 ◦ k ◦ i0.
The following lemma is immediate.

Lemma 2. Let (h, k) be an embedding between one-step modal algebras A =
(A0, A1, i0,30) and A′ = (A′0, A

′
1, i
′
0,3

′
0). Suppose they are both augmented and

that for the respective interpretations a, a′ of the parameters a = a1, . . . , an, we
have h(a) = a′, that is, h(ai) = a′i for all i = 1, . . . , n. Then for every formula
φ(a), we have A |= φ(a) iff A′ |= φ(a).

Corollary 2. Suppose that there is an embedding between the one-step modal al-
gebras A and A′;. Then, if A′ validates an axiomatix system Ax, so does A.

For frames we have the dual definition. In the definition below, we use ◦ to
denote relational composition: for R1 ⊆ X×Y and R2 ⊆ Y ×Z, we have R2◦R1 :=
{(x, z) ∈ X × Z | ∃y ∈ Y ((x, y) ∈ R1 & (y, z) ∈ R2)}. Notice that the relational
composition applies also when one or both of R1, R2 is a function.

Definition 7. A p-morphism between step frames F ′ = (W ′1,W
′
0, f
′, R′) and F =

(W1,W0, f, R) is a pair of surjective maps µ : W ′1 −→ W1, ν : W ′0 −→ W0 such
that

(14) f ◦ µ = ν ◦ f ′ and R ◦ µ = ν ◦R′.

W ′1 W1

W ′0 W0
ν

f

µ

f ′

W ′1 W1

W ′0 W0
ν

R

µ

R′

Notice that, when F ′ is standard (i.e., W ′1 = W ′0 and f ′ = id), ν must be f ◦ µ
and (14) reduces to

(15) R ◦ µ = f ◦ µ ◦R′.
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The dual of Lemma 2 holds for step frames too.
We now introduce an important ingredient of our proofs, namely diagrams. These

are adaptations to our step contexts of classical methods in mathematical logic, due
to A. Robinson in the model-theoretic environment [15, Ch. 2.1] and due to Jankov
and Fine in the modal logic environment (see, e.g., [32, Sec. 7.3], [14, Sec. 9.4]).

Let A = (A,B, i,3) be a finite conservative one-step algebra. For each a ∈ A
we introduce a parameter pa (below we call a the tuple of such parameters). Let

Γ0
A(a) := {pa∨b ↔ pa ∨ pb : a, b ∈ A} ∪

{pa∧b ↔ pa ∧ pb : a, b ∈ A} ∪
{p¬a ↔ ¬pa : a ∈ A}.

We augment A by interpreting every parameter pa as a. By the conservativity of
A, for every b ∈ B, there is θb such that b is equal to θ

a1
b . Notice that from our

definitions, it follows in particular that for a ∈ A, we have θi(a) = pa.
Now let

Γ1
A(a) := {θa∨b ↔ θa ∨ θb : a, b ∈ B} ∪

{θa∧b ↔ θa ∧ θb : a, b ∈ B} ∪
{θ¬a ↔ ¬θa : a ∈ B} ∪
{θ3a ↔ 3pa : a ∈ A}.

The positive diagram of A is the set of formulae ΓA(a) := Γ0
A(a) ∪ Γ1

A(a) and
the negative diagram of A is the set of formulae

∆A(a) := {θa ↔ θb : a 6= b, for a, b ∈ B}.
We say that an augmented modal algebra C refutes ΓA ` ∆A iff we have C |= φ(a)
forall φ(a) ∈ ΓA and C 6|= ψ(a) forall ψ(a) ∈ ∆A.

Lemma 3. Let A be a conservative finite one-step algebra with the natural aug-
mentation a (interpreting every parameter pa to a). Then

(1) A refutes ΓA ` ∆A.
(2) For each conservative one-step algebra (C0, C1, j,3), there is an augmen-

tation c such that C = (C0, C1, j,3, c) refutes ΓA ` ∆A iff A is embeddable
into C.

Proof. (1) That A augmented with a refutes ΓA ` ∆A is easy. (2) Now suppose
C = (C0, C1, j,3, c) refutes ΓA ` ∆A. We define h : A → C0 so that we have

h(a) = c. The map k : B → C1 is taken to be k(b) := θ
c1
b . Since C |= Γ0

A(a)
and j is injective, h is a Boolean morphism and since C |= Γ1

A(a), k is a Boolean
morphism too. The fact that k ◦ i = j ◦ h holds by construction (recall that θi(a)
is pa for all a ∈ A0). The preservation of 3 follows from the validitation of the
sentences θ3a ↔ 3pa. Since formulae from ∆A(a) are not validated, k is injective.
Then h must also be injective because the injective morphism k ◦ i factors through
it.

Now assume that A is embedded into (C0, C1, i,3) via (h, k). Notice that k is
uniquely determined by h because A is conservative. Augment (C0, C1, i,3) by
using h(a) to interpret the parameters. Now the claim follows by Lemma 2 and the
fact that A (augmented with a) refutes ΓA ` ∆A. a

The aim of the next section is to formulate semantically, in terms of one-step
frames, the bounded proof property. For this we need to introduce extensions [11]:

Definition 8. Let A0 = (A0, A1, i0,30) be a one-step modal algebra. A one-step
extension of A0 is a one-step modal algebra A1 = (A1, A2, i1,31) satisfying i1◦30 =
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31 ◦ i0. Dually, a one-step extension of the one-step frame S0 = (W1,W0, f0, R0)
is a one-step frame S1 = (W2,W1, f1, R1) satisfying R0 ◦ f1 = f0 ◦R1.

The following lemma relates embeddings into standard algebras with extensions.

Lemma 4. Let A = (A0, A1, i0,30) be a one-step modal algebra and let (k ◦ i0, k)
be an embedding of it into a standard modal algebra A = (A,3). Then the one-step
modal algebra A′ = (A1, A, k,3 ◦ k) is an extension of A. Moreover, if A validates
an axiom system Ax, then so does A′.

Proof. The first claim is by (13); the last claim is due to the fact that A′ also
embeds into A (via the pair of Boolean morphisms (k, id)), so that Corollary 2
applies. a

6. Semantic Characterizations of the bpp and fmp

In this section we prove our main result, namely a semantic characterization of
the fact that an axiomatic system has the bounded proof property and the finite
model property. The following definition introduces the semantic notion leading to
this characterization.

Definition 9. A class of one-step modal algebras has the extension property iff
every conservative one-step modal algebra A0 = (A0, A1, i0,30) in the class has an
extension A1 = (A1, A2, i1,31) such that i1 is injective and A1 is also in the class.

A class of one-step modal frames has the extension property iff every conser-
vative one-step frame S0 = (W1,W0, f0, R0) in the class has an extension S1 =
(W2,W1, f1, R1) such that f1 is surjective and S1 is also in the class.

Theorem 1. An axiomatic system Ax has the bpp iff the class of finite one-step
modal algebras (equivalenly, the class of finite one-step frames) validating Ax has
the extension property.

Proof. Suppose that the class of one-step modal algebras validating Ax has the
extension property and let Γ(a) be a finite presentation (i.e., a finite set of formulae
of modal complexity at most 1) such that Γ 6`1

Ax φ for a formula φ(a) of modal
complexity at most 1. We use a Lindembaum-like construction to build a one-
step modal algebra A0 = (A0, A1, i0,30) as follows. For formulae ψ1(a), ψ2(a) of
modal complexity at most 1, let us put ψ1 ≈ ψ2 iff Γ `1

Ax ψ1 ↔ ψ2. This is
clearly an equivalence relation and we can build the Boolean algebras A0, A1 by
considering the equivalence classes of the formulae of complexity 0 and (0 or 1),
respectively. The Boolean morphism i0 associates with the equivalence class of ψ
the equivalence class of ψ inside the set of formulae of complexity at most 1. This is
clearly injective. We also define 30 to be the map associating with the equivalence
class of ψ the equivalence class of 3ψ. The one-step modal algebra we introduced
is obviously conservative: this is because i0 is injective and because the formulae
of modal complexity 1 can all be obtained as Boolean combinations of formulae of
modal complexity 0 and of formulae of the kind 3ψ, where ψ has complexity 0. A0

also validates Ax by construction. We can define an augmentation by taking a to
be the tuple of the equivalence classes in A0 of the parameters a. In this way, we
have (

∧
Γ)a1 = 1 and φa1 6= 1.

By the extension property, there is an extension A1 = (A1, A2, i1,31), with
injective i1, also validating Ax. We can freely assume that A1 is conservative;
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otherwise, we replace A2 by the subalgebra generated by the images of i1 and 31,
which as a subalgebra also trivially validates Ax. If we continue in this way, we
generate a chain

(16) A0
i0−→ A1 → · · · → Ak

ik−→ Ak+1 → · · ·
of Boolean algebras equipped with semilattice morphisms

(17) A0
30−−→ A1 → · · · → Ak

3k−−→ Ak+1 → · · ·
satisfying the conditions 3k+1 ◦ ik = ik+1 ◦ 3k and such that for every k ≥ 0,
the one-step modal algebra (Ak, Ak+1, ik,3k) validates Ax. Thus, the Boolean
algebra A obtained by taking the colimit of (16) can be endowed with a semilattice
morphism 3 : A −→ A in such a way that A := (A,3) is a standard modal algebra
validating Ax by construction. In this algebra, under the obvious augmentation
obtained by composing the previous augmentation a with the inclusion of A0 into
the colimit, since the ik are all injective, we have A |= Γ(a) and A 6|= φ(a). Thus,
we found an augmented (standard) modal algebra validating Ax,Γ but not φ: this
implies that Γ 6`Ax φ.

Conversely, suppose that the bpp holds and take a conservative finite one-step
modal algebra A = (A0, A1, i0,3). Let a be a list of parameters naming the el-
ements of A0. Since A (with the natural augmentation) refutes ΓA ` ∆A, by
Lemma 1, we have that ΓA 6`1

Ax δ for every δ ∈ ∆A. By the bpp, we have

(18) ΓA 6`Ax δ

for every δ ∈ ∆A.
Now consider the sets S0, S1, S2 of formulae θ(a) of complexity at most 0, 1, 2,

respectively. Introduce in these sets the Lindembaum equivalence relations ψ1 ≈ ψ2

iff ΓA `Ax ψ1 ↔ ψ2 and let B0, B1, B2 be the Boolean algebras of the equivalence
classes. We have Boolean and semilattice morphisms:

B0
i0−→ B1

i1−→ B2, B0
30−−→ B1

31−−→ B2,

making B0 = (B0, B1, i0,30) and B1 = (B1, B2, i1,31) one-step conservative modal
algebras validating Ax; B1 is an extension of B0 with injective i1. We can augment
B0 by interpreting the parameters a as their own equivalence classes. By (18)
and Lemma 3, A embeds into B0. The embedding from the proof of Lemma 3 is
an isomorphism by the construction of B0: in fact, the equivalence classes of the
parameters a are in the image of the embedding, they generate B0 as a Boolean
algebra, whereas the Boolean algebra B1 is generated by their images along i0 and
30 (in fact, B1 consists of the equivalence classes of the formulae ψ(a) having modal
complexity at most 1). Since B0 ' A and B0 has an extension B1 validating Ax
with injective i1, the result follows. a

The characterization of bpp from Theorem 1 may not be easy to handle, because
in practical cases one would like to avoid managing one-step extensions and would
prefer to work with standard frames instead. This is possible, if we combine the
bpp with the finite model property.

Definition 10. An axiomatic system Ax has the (global) finite model property, the
fmp for short, if for every tuple a of parameters, for every finite set of formulae Γ(a)
and for every formula φ(a) we have Γ 6`Ax φ iff there exists a finite a-augmented
modal algebra A such that A |= Ax, A |= Γ(a) and A 6|= φ(a) (equivalently, iff
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there exists a finite a-augmented Kripke frame F such that F |= Ax, F |= Γ(a) and
F 6|= φ(a)).

Notice that a finite a-augmented Kripke frame F is nothing but a Kripke model
based on F (here we consider Kripke valuations restricted to the parameters only).

We are ready for our main result:

Theorem 2. An axiomatic system Ax has both the bpp and the fmp iff every fi-
nite conservative one-step frame validating Ax is a p-morphic image of some finite
frame validating Ax (equivalently, iff every finite conservative one-step modal alge-
bra validating Ax has an embedding into some finite modal algebra validating Ax).

Proof. First assume that every finite conservative one-step modal algebra vali-
dating Ax has an embedding into some standard finite modal algebra validating
Ax. Since this implies that the class of finite one-step modal algebras validating Ax
has the extension property (by Lemma 4), Ax has the bpp by Theorem 1. Now, to
show that fmp holds, suppose that Γ 6`Ax ϕ, for a finite set Γ(a) and for a formula
φ(a). By applying the same method as in the proof of Proposition 4, we can freely
assume that Γ, φ have complexity 1. Let us build the Lindembaum algebra for
Γ,Ax. This is the algebra defined in the following way: for formulae ψ1(a), ψ2(a),
let us put ψ1 ≈ ψ2 iff Γ `Ax ψ1 ↔ ψ2. This is clearly an equivalence relation and
we can build an augmented modal algebra out of it by defining all operations on
equivalence classes. In particular, the selected tuple a will be the tuple of the equiv-
alence classes of the a. We obtain Boolean subalgebras A0, A1, . . . by considering
the equivalence classes of the formulae of modal complexity at most 0, 1, ... Then
φ is refuted in the augmented one-step modal algebra A = (A0, A1, i0,30, a) which
is such that A |= Γ(a) and A |= Ax. Here i0 is inclusion and 30 is the restriction of
3 to A0 in the domain and A1 in the codomain. By our assumption, A embeds (via
some k satisfying (13)) into a finite modal algebra A = (A,3) validating Ax. We
can augment A by taking the k(i0(a)) as the selected tuple interpreting the param-
eters a. As embeddings preserve the interpretation of formulas (see Lemma 2), we
have that (A,3, k(i0(a))) also refutes φ(a), validates Γ(a). Hence, (A,3, k(i0(a)))
is a countermodel to Γ `Ax φ, and thus Ax has the finite model property.

Now suppose Ax has both the bpp and the fmp and let A be a finite conservative
one-step modal algebra that validates Ax. Since A (with the natural augmentation)
refutes ΓA ` ∆A, by Lemma 1, we have that ΓA 6`1

Ax δ for every δ ∈ ∆A. By the
bpp, we have

(19) ΓA 6`Ax δ

for every δ ∈ ∆A and by the fmp there exists an augmented finite modal algebra Cδ
witnessing this. Taking the (finite) product of the Cδ, we obtain a finite augmented
modal algebra C refuting ΓA ` ∆A and validating Ax. By Lemma 3, this implies
that A is embedded into C. a

7. One-Step Correspondence

In this section we develop the correspondence theory for one-step frames based
on the classical correspondence theory for standard frames.

Let us turn to Definition 5. We make a little reformulation of it in the following.
Notice that a one-step modal algebra =(A0, A1, i,3) is in fact a two-sorted structure
for the first-order language La having two sorts, Boolean operations for each of
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them, and two sorted unary function symbols. We may express inference validation
using Tarski first order semantics, provided we turn modal formulae φ of complexity
at most 1 into terms for such a language. This is easily done as follows: just replace
every occurrence of a variable x which is not located inside a modal connective in
φ by i(x). Let us call φ̃ the result of such a replacement. The following fact is then
clear.

Proposition 6. We have that A validates the reduced inference rule

(20)
φ1(x), . . . , φn(x)

ψ(x)

iff as a two-sorted La-structure, it satisfies

(21) A |= ∀x (φ̃1 = 1 & · · ·& φ̃n = 1→ ψ̃ = 1).

If A is of the kind F∗ for a one-step frame F , we can turn (21) into a formula
in the language Lf of one-step frames. Such a language is also two-sorted, but it
is much simpler because it has just a unary function and a binary relation symbol.
The conversion is obvious and can be adapted from standard translations in modal
logic [5]. The problem however is that the conversion introduces second order
quantifiers (the x are subsets when dealing with frames) and so may lead to a
condition that is difficult to handle in the applications. The idea is to make same
symbolic manipulations on it and try to convert it into a first-order Lf -condition.
This is not always possible, but may succeed in many practical cases. Following
the extensive literature on this topic [5–8, 19–22, 28, 29, 42] (see also [13, Sec. 3.6],
[14, Sec. 10.3], [32, Ch. 5]), we introduce the symbolic procedure at the algebraic
language by first enriching La.

The enrichment comes from the following observations. Suppose that F =
(W0,W1, f, R) is a one-step frame. First of all, the Boolean algebras ℘(W0), ℘(W1)
are atomic and moreover the morphism i := f∗ : ℘(W0) → ℘(W1) has a left i∗

and a right adjoint i!. In fact i∗ is direct image along f and i! is ¬i∗¬. The op-
erator 3 : ℘(W0) → ℘(W1) (we skip the index R) also has a right adjoint, which
is the Box operator � induced by the converse relation Ro of R. We shall make
use also of the related Diamond � defined as ¬�¬. Thus we enrich La with extra
unary function symbols i∗, i!,�,� of appropriate sorts. In addition, we shall make
use of the letters w0

i , w
1
i to denote nominals, namely quantified variables ranging

over atoms (i.e., singleton subsets) of ℘(W0), ℘(W1), respectively. For simplicity
and for readability, we shall avoid the superscript (−)1, (−)0 indicating the sort of
nominals. However, we shall adopt the convention of using preferably the variables
w,w0, w

′, . . . for nominals of sort 1, the variables v, v0, v
′, . . . for nominals of sort 0

and the letters u, u0, u
′, . . . for variables of unspecified sort (i.e., for variables that

might be of both sorts, which are useful in preventing, e.g., rule duplications). We
call L+

a the enriched language.
The idea is the following. We want to analyze validity of the inference rule (20)

in a one-step frame F . We initialize our procedure to:

(22) ∀x (1 ≤ φ̃1 & · · ·& 1 ≤ φ̃n → 1 ≤ ψ̃)

Here and below, we use abbreviations such as α ≤ β to mean α→ β = 1. Usually,
we omit external quantifiers ∀x and use sequent notation, so that (22) is written as

(23) 1 ≤ φ̃1, . . . , 1 ≤ φ̃n ⇒ 1 ≤ ψ̃ .



THE BOUNDED PROOF PROPERTY VIA STEP ALGEBRAS AND STEP FRAMES 21

φ̃ ≤ ψ̃
∀u (u≤φ̃ → u≤ψ̃)

u ≤ ψ̃1∧ψ̃2

u≤ψ̃1 & u≤ψ̃2

u ≤ ψ̃1∨ψ̃2

u≤ψ̃1 or u≤ψ̃2

u ≤ ¬ψ̃
u6≤ψ̃

u6≤ψ̃
ψ̃≤¬u

w ≤ 3ψ̃

∃v (w≤3v & v≤ψ̃)

v ≤ �ψ̃
∃w (v≤�w & w≤ψ̃)

u ≤ 1
>

u ≤ 0
⊥

v ≤ i∗(ψ̃)

∃w (v≤i∗(w) & w≤ψ̃)

Table 1. Nominals Rules

φ̃ ≤ 2ψ̃

�φ̃ ≤ ψ̃
φ̃ ≤ �ψ̃
3φ̃ ≤ ψ̃

φ̃ ≤ i(ψ̃)

i∗(φ̃) ≤ ψ̃
φ̃ ≤ i!(ψ̃)

i(φ̃) ≤ ψ̃

Table 2. Adjunction Rules

We then try to find a sequence of applications of the rules below ending with a
formula where only quantifiers for nominals occur (that is, the variables x have been
eliminated). If we succeed, the standard translation can easily and automatically
convert the final formula into a first-order formula in the language Lf . It is possible
to characterize syntactic classes (e.g., Sahlqvist-like classes and beyond) where the
procedure succeeds, but for the purposes of this paper we are not interested in the
details of such characterizations. They can be obtained in a straightforward way
by extending well-known characterizations, see e.g. [5, 20,22]).

The rules we use are divided into three groups:

(a): Any set of invertible rules in classical first-order sequent calculus; we refer
the reader to proof-theory textbooks such as [37] for more details on this;

(b): Rules for managing nominal quantifiers (see Table 1);
(c): Adjunction rules (see Table 2);
(d): Ackermann rules (see Table 3).

Rules (a)-(b)-(c) are local, in the sense that they can be applied simply by
replacing the upper formula by the lower formula (or vice versa); rules (d) on the
contrary require checking global monotonicity conditions at the whole sequent level.
Ackermann rules eliminate the quantified variables x one by one in successful runs.

When we start from a logic L, we first need to convert the axioms into reduced
inference rules. The method indicated in the proof of Proposition 3 has the big
advantage of introducing new quantified variables that can be easily eliminated via
the adjunction and Ackermann rules, as is shown in the example below.
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Γ, x≤φ̃⇒ ∆

Γ(φ̃/x)⇒ ∆(φ̃/x)
(x is not in φ, is positive in all Γ, negative in all ∆)

Γ, φ̃≤x⇒ ∆

Γ(φ̃/x)⇒ ∆(φ̃/x)
(x is not in φ, is negative in all Γ, positive in all ∆)

Table 3. Ackermann Rules

Example 1. Let us consider the system K4 that is axiomatized by the single axiom
2x → 22x. Since this axiom does not have modal complexity 1, we turn it into
the inference rule

(24)
2x ≤ y

2x ≤ 2y

following the proof of Proposition 3. We initialize our procedure to

2x ≤ i(y)⇒ 2x ≤ 2y.

by adjunction rules, we obtain

i∗(2x) ≤ y ⇒ 2x ≤ 2y.

We can immediately eliminate y via the Ackermann rules

2x ≤ 2i∗(2x).

We now use atom rules together with rules (a) (i.e., invertible rules in classical
sequent calculus) and arrive at:

w ≤ 2x⇒ w ≤ 2i∗(2x).

Notice that we have also the nominal variable w implicitly universally quantified
here. By adjointness we obtain a sequent

�w ≤ x⇒ w ≤ 2i∗(2x)

to which the Ackermann rules apply yieldying

w ≤ 2i∗(2�w).

This is a condition involving only (one) quantified variable for nominals. Thus in
the language Lf for one-step frames it is first-order definable. To do the unfolding,
it is sufficient to notice that the nominal w stands in fact for the set {w′ ∈ W1 |
w′ = w}. Therefore, by turning ≤ into a set-theoretic inclusion and letting the
modal operators have their standard relational meaning, we obtain

∀w ∀w′ (w = w′ → ∀v (R(w′, v)→ ∃w1 (f(w1) = v &

& ∀v1(R(w1, v1)→ ∃w2 (R(w2, v1) & w2 = w)))))

that simplifies to

(25) ∀w ∀v (R(w, v)→ ∃w1 (f(w1) = v & R(w1) ⊆ R(w))) .

Using relational composition notation, condition above can be rewritten as

(26) R ⊆ f◦ ≥R,
where w1 ≥R w2 is defined to be R(w1) ⊇ R(w2).



THE BOUNDED PROOF PROPERTY VIA STEP ALGEBRAS AND STEP FRAMES 23

8. Examples

In this section we show how to apply Theorem 2 in basic cases (more elaborated
examples will be analyzed in the next section). The methodology is the following.
We have three steps, as pointed out in Subsection 1.1:

• starting from a logic L, we produce an equivalent axiomatic system AxL
with reduced rules (for the lack of better ideas, there is a default procedure
for that, see the proof of Proposition 3);
• we apply the correspondence machinery of Section 7 and try to obtain a

first-order formula αL in the two-sorted language of one-step frames char-
acterizing the one-step frames validating AxL;
• we apply Thorem 2 and try to prove that conservative finite one-step frames

satisfying αL are p-morphic images of standard frames for L.

If we succeed, we obtain both the fmp and bpp for L. In the examples, given a
finite conservative one-step frame F = (X,Y, f,R) satisfying αL, the finite frame
required by Theorem 2 is often based on X and the p-morphism is the identity.
Thus one must simply define a relation S on X in such a way that (15) holds (with
R′ = S). Condition (15), taking into consideration that µ is the identity, reduces
to

(27) R = f ◦ S.

There are standard templates for S (e.g., for the basic case, reflexive case, transitive
case, etc.). Once the right template is chosen, checking (27) becomes a first-order
deduction problem. As such, the problem can also be solved by automated reasoning
tools (or also manually).

We give some examples below (we shall use a relational formalism, which is more
succint than full first-order logic).

• L = K : this is the smallest normal modal logic. Take S := fo ◦R.9 Then
we have f ◦ S = f ◦ fo ◦ R = R, showing (27) (we used that f ◦ fo = id,
which holds by the surjectivity of f).

• L = T : this is the logic axiomatized by 2x→ x. The one-step correspon-
dence gives f ⊆ R as the semantic condition equivalent to being a one-step
frame for L. We still take S := fo ◦ R and get (27) as above. In addition,
we must show that S is reflexive, namely that id ⊆ S: this is obtained from
id ⊆ fo ◦ f ⊆ fo ◦R = S.

• L = K4 : this is the logic axiomatized by 2x → 22x. As we know,
this axiom can be turned into the equivalent rule (24) and the one-step
correspondence gives (26) (namely R ⊆ f◦ ≥R) as the semantic condition
equivalent to being a one-step frame for K4 (recall that w ≥R w′ is defined
as R(w) ⊇ R(w′)). We take S to be (fo ◦R)∩ ≥R.10 To check (27), notice
that

f ◦ S = f ◦ ((fo ◦R)∩ ≥R) = R ∩ (f◦ ≥R) = R

where we used (26) together with the relational identity R ∩ (f ◦ H) =
f ◦ ((fo ◦ R) ∩ H), holding for all R,H. To check that S is transitive,

9This is the same as saying that wSz iff f(z) ∈ R(w).
10This is the same as saying that wSw′ iff R(w) ⊇ {f(w′)} ∪R(w′).



24 NICK BEZHANISHVILI AND SILVIO GHILARDI

observe that

S ◦ S = ((fo ◦R)∩ ≥R) ◦ ((fo ◦R)∩ ≥R) ⊆
⊆ (≥R ◦ ≥R) ∩ (fo ◦R ◦ ≥R) ⊆ ≥R ∩(fo ◦R) = S

because R ◦ ≥R ⊆ R.

• L = S4 Here one can combine the previous two cases. However, the def-
inition of S as (fo ◦ R)∩ ≥R simplifies to ≥R. In fact, we have w((fo ◦
R)∩ ≥R)w′ iff wRf(w′) & R(w) ⊇ R(w′) iff R(w) ⊇ R(w′) (given that
f(w′) ∈ R(w′) holds by reflexivity).

Some of the above computations might look involved, but all of them can be
automatized: one can use (an adaptation of) the Sahlqvist correspondence algo-
rithm SQEMA together with a first-order prover to discharge them.11 Only the
definition of S needs to be supplied, but standard solutions (such as S := fo ◦R or
S := (fo ◦R)∩ ≥R or S :=≥R used above) may work well in practice.

Remark 6. Notice that the definition of a conservative finite one-step frame (Def-
inition 4) has two conditions. However, only the first one (namely surjectivity of f)
is used in the computations above. In fact, it is not clear whether Theorem 2 holds
if we drop the second condition (11) in the definition of a one-step conservative
frame. All what we can say at the moment is that in the applications we use only
the right-to-left side of the theorem and that the second condition of the defini-
tion of conservativety does not seem to play any role. Contrary to this, although
the requirement of the finiteness of the one-step frame which is required to be a
p-morphic image of a standard frame has not been used so far, it will be essentially
applied in more complicated cases in the next section.

9. Case Studies

In this Section we show that our methodology can be fruitfully applied to sig-
nificant logics taken from the proof-theoretic literature.

9.1. A case study: S4.3. As a first example we take S4.3, which is S4 plus the
axiom

2(2x→ y) ∨2(2y → x).

Applying the procedure of Proposition 3, we obtain the equivalent rule

(28)
x′ ≤ 2x, y′ ≤ 2y

2(x′ → x) ∨2(y′ → y).

Correspondence applied to this rule gives the following condition
(29)
∀w∀v1∀v2(wRv1 & wRv2 → ∃w1(f(w1) = v1 & w1Rv2)∨∃w2(f(w2) = v2 & w2Rv1)).

This condition is ‘bad’. Indeed the above axiomatization for S4.3 lacks the bpp as
follows from the counterexample described below.

Example 2. Since it is well-known that the fmp holds for S4.3, it is sufficient, in
view of Theorem 2, to exhibit a finite one-step conservative frame satisfying (29)
which is not a p-morphic image of a standard frame for S4.3. We sketch the coun-
terexample. The key observation is that a finite one-step frame can be extended to

11 The SPASS prover solves each of the above problems in less than half a second on a common
laptop.
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a finite frame for S4.3 iff it satisfies condition (31) below (one side of the equiva-
lence will be proved below, the other side is trivial, because a standard frame for
S4.3 satisfies (31) and so does any step-frame which is a p-morphic image of it).
Hence it is sufficient to exhibit a reflexive, transitive one-step finite frame satisfy-
ing (29) but not (31) (reflexivity and transitivity are intended in the sense of step
correspondence, they are characterized in Section 8). In order to obtain such a
counterexample consider the following one-step frame (it is sufficient to take any
n ≥ 3):

X := {0} ∪ {1, . . . , n}2, Y := {0} ∪ {1, . . . , n}
with

R(0) := Y, R(〈i, j〉) = {i, j}, f(0) := 0, f(〈i, j〉) = i.

Reflexivity, transitivity and (29) are trivial (for transitivity, use the pairs 〈j, j〉).
On the other hand, (31) fails with w := 0 and S := {1, . . . , n}.

Instead of the rule obtained by the procedure of Proposition 3, we axiomatize
S4.3 by using the reflexivity axiom for T and the following infinitely many rules
proposed by R. Goré [30]:

(30)
· · ·2y → xj ∨

∨
j 6=i2xi · · ·

2y →
∨n
i=1 2xi

The rules are indexed by n and the n-th rule has n premises, according to the
values j = 1, . . . , n.

We do the correspondence manually on the n-th rule. We directly use a set-
theopretic language for one-step frames instead of the rules from the tables of
Section 7. The reason is that first-order language is not sufficient for our procedures.

The n-th rule is not valid in a one-step frame (X,Y, f,R) iff there exist w ∈
X,Q ⊆ Y, P1 . . . , Pn ⊆ Y such that

R(w) ⊆ Q & ∃v1, . . . , vn

n∧
i=1

(wRvi & vi 6∈ Pi) &

n∧
j=1

(2RQ ⊆ f∗(Pj) ∪
⋃
j 6=i

2RPi).

We can now apply Ackermann rule with Q := R(w), Pi := Y \ {vi} and obtain

∃w ∃v1, . . . , vn

n∧
i=1

wRvi &

n∧
j=1

(2RR(w) ⊆ f∗({vj}C) ∪
⋃
j 6=i

2R{vi}C)

(where (−)C is the set-theoretic complement to Y ). This is a first-order condition.
If we negate it, we obtain the following condition for the validity of the n-th rule:

∀w ∀v1, . . . , vn({v1, . . . , vn} ⊆ R(w)→
n∨
j=1

2RR(w) 6⊆ f∗({vj}C) ∪
⋃
j 6=i

2R{vi}C) .

This can be rewritten into

∀w ∀v1, . . . , vn ({v1, . . . , vn} ⊆ R(w)→
→

∨n
j=1 ∃wj(R(wj) ⊆ R(w) & f(wj) = vj &

∧
j 6=i wjRvi)) .

Now, we are interested only in finite step frames, where the simultaneous validity
of all the rules can be restated as follows:

∀w ∀S ⊆ R(w) ∃v ∈ S ∃w′ (f(w′) = v & S \ {v} ⊆ R(w′) ⊆ R(w)),
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where S is assumed to range over non empty sets. Since we also have the reflexivity
condition f ⊆ R coming from the validity of the axiom of T, we finally obtain

(31) ∀w ∀S ⊆ R(w) ∃v ∈ S ∃w′ (f(w′) = v & S ⊆ R(w′) ⊆ R(w)).

Thus, we arrived at the following

Lemma 5. Every one-step frame of S4.3 axiomatized by Goré’s rules (30) satisfies
(31).

In order to apply Theorem 2 we must prove that a finite one-step (X,Y, f,R)
frame satisfying (31) can be extended to a finite frame (X ′, R′) which is quasi-linear
(i.e., it is a frame for S4.3)

(32) ∀w ∀w1 ∀w2 (wRw1 & wRw2 → w1Rw2 or w2Rw1).

Note that (31) is equivalent to (32) if interpreted in standard frames. For proving
the next theorem contrary to what we did in Section 7, we shall not take X ′ to be
X, but we shall define X ′ via an ad hoc definition.

Theorem 3. S4.3 axiomatized by Goré’s rules (30) has the bpp and fmp.

Proof. Let (X,Y, f,R) be a conservative finite one-step validating (30), and hence
satisfying (31). Notice that we can define a preorder ≥R on X by putting w1 ≥R w2

iff R(w1) ⊇ R(w2). An ≥R-chain is a nonempty subset C of X such that we have
w1 ≥R w2 or w2 ≥R w1 for all w1, w2 ∈ C. For such a chain C, we write C := Cw
to emphasize that w is a ≥R-biggest element of C (notice that this ≥R-biggest
element may not be unique). We take X ′ to be the disjoint union of the ≥R-chains
C of X satisfying the following condition:

(33) w ∈ C & wRv → ∃w′ ∈ C (w ≥R w′ & f(w′) = v).

Let µ : X ′ −→ X be the disjoint union of the inclusions. X ′ can be turned into a
quasi-linear preorder by taking the disjoint union of the relations ≥R. Since (15)
holds by construction and by reflexivity, we only need to check the surjectivity of
µ, namely that each w ∈ X belongs to a chain Cw satisfying condition (33). We
do that by induction on the cardinality of R(w). Suppose that this is true for all
w′ such that R(w′) has cardinality smaller than R(w). Let U be the subset of X
consisting of z ∈ X such that R(z) = R(w). This is a single cluster in X. In case
it satisfies condition (33), the result follows. If it does not, let S be the subset
of those elements v ∈ R(w) for which there is no w′ ∈ U such that f(w′) = v.
According to our assumption S is not empty and hence by condition (31) there
are v ∈ S and z such that f(z) = v and S ⊆ R(z) ⊆ R(w). Since f(z) = v and
v ∈ S, we must have z 6∈ U , that is R(z) 6= R(w). However, R(z) ⊆ R(w), thus
we have the strict inclusion R(z) ⊂ R(w) and, as a consequence, our induction
hypothesis applies to z. This means that z belongs to a chain C ′z satisfying (33)
and we can put Cw = U ∪ C ′z to find the desired chain containing w. To see this,
notice that for any v ∈ R(w) either there is a w′ ∈ U such that f(w′) = v or v is
in S ⊆ R(z) ⊆ R(w). Hence there is some w′ ∈ C ′z such that f(w′) = v. The same
applies to the case v ∈ R(w̃) for w̃ ∈ U , because R(w̃) = R(w) by the definition of
U . Thus, we have found a finite standard frame for S4.3 (namely X ′ endowed with
the disjoint unions of the ≥R) which the given conservative finite one-step frame
(X,Y, f,R) validating Goré’s rules (30) is a p-morphic image of. The result follows
by Theorem 2. a
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9.2. A case study: GL. The Gödel-Löb modal logic GL can be axiomatized by
the single axiom 2(2x→ x)→ 2x. This system is known to have the fmp and to
be complete with respect to the class of finite irreflexive transitive frames. From
the proof-theoretic side, the following rule

(34)
x ∧2x ∧2y → y

2x→ 2y

has been proposed in [2], and shown to admit cut-elimination.12 We are going to an-
alyze GL when equivalently axiomatized by rule (34) and show by using Theorem 2,
that it has both the fmp and bpp.

We manually analyze the validity of rule (34) in a one-step frame. It would also
be possible (by introducing specific Ackermann rules for fixpoint first-order logic)
to apply the machinery of Section 7 for the first part of our argument below, see
the techniques of [8]. The rule (34) is not valid on a one step frame (W1,W0, R, f)
iff

∃P,∃Q ⊆W0 (f∗(P ) ∩2RP ∩2RQ ⊆ f∗(Q) & 2RP 6⊆ 2RQ)

i.e. iff

∃w ∈W1, ∃P,∃Q ⊆W0 (∃f [f∗(P )∩2RP ∩2RQ] ⊆ Q & R(w) ⊆ P & R(w) 6⊆ Q)

(here ∃f is direct image along f). We can eliminate now P by the Ackermann rule
and obtain

∃w ∈W1, ∃Q ⊆W0 (∃f [f∗(R(w)) ∩2RR(w) ∩2RQ] ⊆ Q & R(w) 6⊆ Q).

We let Q := µ(Y,w) ∃f (f∗(R(w)) ∩2RR(w) ∩2Y ) be the minimal assignment for
Q. Then we have ∃w ∈ W1(R(w) 6⊆ µ(Y,w)∃f (f∗(R(w)) ∩ 2RR(w) ∩ 2RY ). This
means that our LFP(FO)-correspondent is the formula

(35) ∀w R(w) ⊆ µ(Y,w) ∃f (f∗(R(w)) ∩2RR(w) ∩2RY ).

We want to have a better version of (35) in finite step frames. For this we need the
following lemma.

Lemma 6. Let (W1,W0, R, f) be a one-step frame. Then for every w ∈ W1, we
have

(36) µ(Y,w) ∃f (f∗(R(w)) ∩2RR(w) ∩2RY ) ⊆ {f(w′) | R(w′) ⊂ R(w)}
(here ⊂ stands for strict inclusion).

Proof. Since µ(Y,w) is the minimum prefix point, it suffices to show that {f(w′) |
R(w′) ⊂ R(w)} is also a prefix point, namely that we have

∃f (f∗(R(w)) ∩2RR(w) ∩2R{f(w′) | R(w′) ⊂ R(w)}) ⊆ {f(w′) | R(w′) ⊂ R(w)}
i.e. by adjunction between direct and inverse image
(37)
f∗(R(w)) ∩2RR(w) ∩2R{f(w′) | R(w′) ⊂ R(w)} ⊆ f∗({f(w′) | R(w′) ⊂ R(w)})
To show (37), pick z such that (i) f(z) ∈ R(w); (ii) R(z) ⊆ R(w); (iii) R(z) ⊆
{f(w′) | R(w′) ⊂ R(w)}. We need to find w′ such that f(z) = f(w′) and R(w′) ⊂
R(w). Now, if f(z) ∈ R(z) the result follows by (iii). Otherwise, we can take
w′ := z and obtain R(z) ⊆ R(w) by (ii). Since f(z) ∈ R(w) \ R(z) by (i), the
inclusion is indeed proper. The result follows. a

12 To be precise, [2] has a sequent notation for the rule (he has commas where we have ∧ and a
finite list Γ where we have a single variable x), but this difference is immaterial for our purposes.
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We have the following corollary of Lemma 6 and (35).

Corollary 3. A finite one-step frame validates Avron’s rule (34) iff we have

(38) ∀w (R(w) ⊆ {f(w′) | R(w′) ⊂ R(w)}).
Proof. By the above, we only need to show that (38) implies (35) in finite frames.

Assume (38) and pick v ∈ R(w). By (38) there is w′ such that f(w′) = v and
R(w′) ⊂ R(w). Let k be the cardinality of R(w′). We prove by induction on k that
v ∈ Nk+1, where Nk+1 is the k+1-th member of the ascending approximation chain
of the fixpoint (i.e. we have N0 := ∅ and Nk+1 := ∃f (f∗(R(w))∩2RR(w)∩2RNk)).
For k = 0, the claim is easy; for k > 0, we show that w′ ∈ f∗(R(w)) ∩ 2RR(w) ∩
2RNk. That w′ ∈ f∗(R(w)) ∩ 2RR(w) is clear by the choice of w′. To prove
that R(w′) ⊆ Nk, pick ṽ ∈ R(w′). By (38) there is w̃′ such that f(w̃′) = ṽ and
R(w̃′) ⊂ R(w′) ⊂ R(w). Thus the induction hypothesis applies and we obtain
ṽ ∈ Nk. a

Notice that condition (38) implies the one-step transitivity condition (25). Corol-
lary 3 allows us to prove that

Theorem 4. GL axiomatized by Avron’s rule (34) has the bpp and fmp.

Proof. In order to apply Theorem 2, let us fix a finite conservative one-step
frame (W1,W0, f, R) satisfying (38). We need to build a standard finite frame
(W ′, S) (with irrefelexive and transitive S) and a surjective map µ : W ′ −→ W1

satisfying (15). The idea is to build for every w ∈ W1 an irreflexive transitive
finite tree (Tw, Sw) and a function µ : Tx −→ W1 mapping the root of Tw to w
and satisfying (15). Once this is done, we can simply take the disjoint union of
the (Tw, Sw) to get the desired (W ′, S). The constructions of µx and of (Tw, Sw)
are indeed easily obtained by induction on the cardinality of R(w) (this induction
works because our step frame is finite and (38) holds). In the induction step, if
R(w) = {v1, . . . , vn}, we take w1, . . . , wn ∈ W1 such that for all i = 1, . . . , n we
have f(wi) = vi and R(wi) ⊂ R(w); then we add a root to the disjoint union of
the already built trees (Tw1 , Sw1), . . . , (Twn , Swn). Thus, we have found a finite
standard frame for GL (namely (W ′, S) above) which the given conservative finite
one-step frame (W1,W0, f, R) validating Avron’s rule (34) is a p-morphic image of.
The result follows by Theorem 2. a

We point out that the standard axiomatization of GL is bad (i.e. it does not
satisfies the bpp). The standard axiomatization for GL consists of the transitivity
rule (24) for K4 plus Löb’s rule

(39)
2x→ x

x

If we apply correspondence machinery to this rule, we obtain the following LFP(FO)-
condition for one-step conservative frames (W1,W0, f, R):

(40) ∀v ∈W0 v ∈ µ(Y, v) (∃f2RY ).

Now, it follows from the above, that conservative finite one-step frames which are p-
morphic images of standard finite frames for GL are precisely those that satisfy (38).
This, together with the fact that GL has the fmp, implies that either (40) is
equivalent to (38) for transitive conservative finite one-step frames, or that the
axiomatization of GL given by the transitivity rule plus Löb’s rule does not satify
the bpp.
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Example 3. The following (W1,W0, f, R) is an example of a finite conservative
transitive one-step frame satisfying (40) but not (38). Take W0 := {v1, v2}, W1 :=
{w1, w2, w3}, R := {(w1, v1), (w2, v2)}, f(w1) := f(w2) := v1, f(w3) = v2. If we
compute µ(Y,w) (∃f2RY ), we converge in three steps with ∅ ⊆ {v2} ⊆ {v1, v2},
thus (40) is true. Conservativity (Definition 4) and transitivity (25) are easily seen
to be true. However, (38) fails because we have that w1 is the only element which
is such that f(w1) ∈ R(w1) = {v1} and the inclusion R(w1) ⊆ R(w1) is obviously
not strict.

Finally, one may wonder what happens if we apply the procedure of Proposition 3
to the GL axiom 2(2x→ x)→ 2x. We obtain the rule

(41)
x→ (2y → y)

2x→ 2y

This may be seen as just a reformulation of Avron’s rule. In fact, the two rules
are inter-derivable with derivations of modal complexity 1. Firstly, the derivability
of (41) from (34) is clear (because (x → (2y → y)) → (x ∧ 2x ∧ 2y → y) is a
tautology). For the other direction, use the fact that

(x ∧2x ∧2y → y)→ (x→ (2(x ∧ y)→ (x ∧ y)))

is a theorem in any normal modal logic and apply rule (41) with y replaced by x∧y.
Thus, we have an example where the general procedure of Proposition 3 suggests
a ‘good’ inference rule.

9.3. A case study: S5. The modal logic S5 is obtained from T by adding it
the axiom 3x → 23x; semantically, the system S5 is complete with respect to
(finite) Kripke frames whose accessibility relation is an equivalence relation. Despite
its semantic simplicity, S5 is challenging for proof-theoretic design. In a usual
formulation [38] (see also the discussion in [3, 39]), S5 is axiomatized by adding to
a cut-eliminating sequent calculus for T the following rule:

(42)
2Γ⇒ y,2∆

2Γ⇒ 2y,2∆

In the resulting system, cuts cannot be completely eliminated, but can be limited to
subformulae of the sequent to be proved. This ‘analytic’ cut-elimination property
is sufficient to imply the bpp, and thus we should be able to obtain the bpp directly
by our methods. We show that it is indeed so.

A preliminary remark is in order. In sequent calculi, one adopts the meta-
notation 2Γ for the finite set {2x | x ∈ Γ}. Notice however that the comma
represents conjunction on the left of the sequent implication ⇒ and disjunction on
the right of it. Since we do not care about equivalence modulo complexity 1 proofs,
we are legitimate to replace a formula such as

∧
x∈Γ 2x by 2

∧
x∈Γ x, hence we can

shrink a finite set 2Γ on the left of the sequent implication to a single formula 2x
without compromizing our analysis. We cannot however do the same on the right
of the sequent implication because 2 does not distribute over disjunctions. This
is why (42) is in fact an infinite sequence of rules for our purposes; this infinite
sequence can be more conveniently written as

(43)
2x→ y ∨2z1 ∨ · · · ∨2zn

2x→ 2y ∨2z1 ∨ · · · ∨2zn
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In particular, the correspondence algorithm must try to find a condition which is
equivalent to the whole infinite sequence of rules (43) (similarly to the S4.3 case
above).

To facilitate our task let us rewrite (43) as

(44)
2x ∧3z1 ∧ · · · ∧3zn → y

2x ∧3z1 ∧ · · · ∧3zn → 2y

(this is a modal complexity 1 transformation). The n-th rule (44) is not valid in a
finite one-step frame (X,Y, f,R) iff there exists Q,R, P1 . . . , Pn ⊆ Y such that

2Q ∩3P1 ∩ · · · ∩3Pn ⊆ f∗(R) & 2Q ∩3P1 ∩ · · · ∩3Pn 6⊆ 2R

Using adjunction between direct image ∃f and inverse image f∗ and Ackermann
rule, we equivalently get

2Q ∩3P1 ∩ · · · ∩3Pn 6⊆ 2∃f (2Q ∩3P1 ∩ · · · ∩3Pn).

Thus the rule is not valid iff there is w ∈ X such that

R(w) ⊆ Q & w ∈ 3P1 ∩ · · · ∩3Pn & R(w) 6⊆ ∃f (2Q ∩3P1 ∩ · · · ∩3Pn).

After eliminating Q by Ackermann lemma and unravelling the definition of 3, we
obtain

∃v1, . . . , vn(

n∧
i=1

wRvi & vi ∈ Pi) & R(w) 6⊆ ∃f (2R(w) ∩3P1 ∩ · · · ∩3Pn).

At this point we can also eliminate the Pi and arrive at

∃v1, . . . , vn (

n∧
i=1

wRvi & R(w) 6⊆ ∃f (2R(w) ∩
n⋂
i=1

3{vi})).

If we look at all these conditions (varying n) and keep in mind that our step frames
are finite, we realize that it is sufficient to take {v1, . . . , vn} := R(w) to get all of
them simultaneously. Thus we obtain a single condition, namely

R(w) 6⊆ ∃f (2R(w) ∩
⋂

v∈R(w)

3{v})).

The negation of this sentence is

(45) ∀w ∈ X,∀v ∈ Y (wRv → ∃w̃ ∈ X (f(w̃) = v & R(w) = R(w̃)).

Theorem 5. S5, as axiomatized by adding to T the rules (43), has the bpp and
the fmp.

Proof. We know that a finite conservatiove one-step frame (X,Y, f,R) for this
system satisfies the step-reflexivity condition ∀w (f(w) ∈ R(w)) together with (45).
To build a standard frame (W ′, S) for S5 and a surjective map µ : W ′ −→ W1

satisfying (15) it is sufficient to take W ′ := W,µ := id and S to be the relation
defined by wSw̃ iff R(w) = R(w̃). a

Again, notice that if we apply the procedure of Proposition 3 to the axiom
3x→ 23x, we obtain the rule

(46)
3x ≤ y

3x→ 2y.

Correspondence applied to this rule gives the following condition

(47) ∀w∀v1∀v2(wRv1 & wRv2 → ∃w1(f(w1) = v1 & w1Rv2).
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This condition is ‘bad’ because it does not guarantee the extension property: the
latter is guaranteed iff (45) holds and it is easy to see (by using for instance the
step frame of Example 2 as a counterexample) that (47) is weaker than (45). Thus,
if we axiomatize S5 by adding to T the rule (46), we do not get the bpp.

10. Conclusions

We have developed a uniform method for obtaining information on a logic and
its axiomatizations. The method relies on embedding properties of finite one-step
modal algebras. By a step-version of the classical correspondence theory, it is
possible to dualize the procedure to one-step frames and to make the application
of our methodology completely algorithmic in the most simple cases. This makes
concrete the possibility of mechanizing the metatheory of propositional modal logic.

We also analyzed our approach in three nontrivial cases, namely for the cut-free
axiomatizations of S4.3, GL and S5 known from the literature and we succeeded in
all three cases in proving the fmp and bpp by our methods. The proof is not entirely
mechanical in these cases, but it is still based on a common feature: induction on
the cardinality of accessible worlds in finite one-step frames.

We still have to face a large amount of questions, that are hard to answer at
the moment because our methodology is quite novel. In particular, it would be
interesting to see whether the method can fruitfully apply to complicated logics
arising in computer science applications (such as dynamic logic, linear or branching
time temporal logics, the modal µ-calculus, etc.).

Another potentially interesting question concerns finite axiomatizability: one in
fact can always trivially force the bpp by taking one rule for each derivable formula,
the point is to show that finitely many rules suffice to achieve the bpp (this is indeed
what brings decidability from the bpp). The notion of finite axiomatizability itself
requires a careful formulation: a rule like 42 should be seen as a single rule, despite
the fact that we cannot shrink the formulae ∆ occurring on the right to a single
formula. What we need here is a notion of a rule with context, like in [4, 35,36].

A final important series of questions concerns the clarification of the relationship
between our techniques and standard techniques employed in filtrations and ana-
lytic tableaux. The connections with hypersequents approaches [3,17] need special
investigation; in fact, hypersequents have shown to be a powerful technique capable
of dealing with a large class of modal semantic conditions [33] they also seem to
provide nice and relatively simple axiomatizations (compare for instance the finite
axiomatization for S4.3 given in [31] with Goré rules from Subsection 9.1 above).
Notice that since an hypersequent H is interpreted (e.g. in S4-systems) by taking
the necessitation of the Boxes of the interpretations of the sequents occurring in
H, the use of an hypersequent of modal complexity 1 yields always a modal com-
plexity 2 proofs, so our results are not applicable to hypersequent calculi. We are
nevertheless confident that our machinery can be modified so to encompass also
applications to hypersequent calculi.
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