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Overview

Part II
1 Soundness and completeness. Canonical models. 3 lectures.
2 Finite model property. Filtrations. 2 lectures.
3 Decidability. 2 lecture.
4 Modal µ-calculus. 2 lectures.
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Syntactic approach

Let us fix a class C of frames. We need to have, whenever
possible, an effective criterion (algorithm) deducing whether a
formula A is valid in C.

If C is infinite then going through all the frames might take
infinite time. Even if C is finite, but contains an infinite frame,
the procedure might still take infinite time.

In order to overcome this difficulty we will develop a syntactic
(axiomatic) approach to modal logic.

The idea of this approach is to find a small (possibly finite)
number of formulas (axioms of our logic) and set some rules of
inference which enable us to derive other formulas (theorems of
our logic).
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Idea

The axioms are ‘given truths’. They should be valid (perhaps
over some given class of frames).

The rules allow us to derive new truths from old. If the
formulas above the line in a rule are already derived, the rule
allows us to derive the formula underneath the line.

Rules should be chosen so as not to lead us from truth into
falsehood. Formulas derived from valid formulas should also be
valid. Here, we mean ‘valid in Kripke semantics’.

Axiomatic approach is simple, powerful, flexible, and in
common use.
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Logics of classes of frames

In Part I we defined when a formula A is valid in a class C of
frames.

A formula A is valid in a class C of frames if it is valid in every
frame in C. That is, A is true in every element of every frame in
C under every assignment.

Given a class C of frames we can consider the set of all formulas
valid in C.

This set is called the logic of C and will be denoted by Log(C).

In formal terms

Log(C) = {A : A is a formula and ∀F ∈ C, A is valid in F}.
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Let C be the class of all frames and let Cref be the class of all
reflexive frames. That is, such frames F = (W,R) that for each
x ∈W we have R(x, x).

What can we say about Log(C) and Log(Cref)? Is any of these
two sets included in the other?

Proposition 1

Let C1 and C2 be classes of frames. If C1 ⊆ C2, then
Log(C2) ⊆ Log(C1).

Proof.

Let A ∈ Log(C2). Then A is valid in every frame in C2. But
since every frame in C1 is in C2, the formula A is also valid in
every frame in C1. This means that A ∈ Log(C1).
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From the above proposition we deduce that Log(C) ⊆ Log(Cref ).

To show that the inverse inclusion does not hold we note that
the formula 2A→ A is valid in Cref , but is not valid in C.
Therefore, the formula 2A→ A belongs to Log(Cref), but does
not belong to Log(C). Thus, these two logics are different.

Exercise 2

Show that the logics of the classes of reflexive, transitive, serial
and symmetric frames, respectively, are all different.

If a class C consists of a single frame F , we denote the logic of C
by Log(F) instead of Log({F}).
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Exercise 3

1 Show that if a frame F is a p-morphic image of a frame G,
then Log(G) ⊆ Log(F).

2 Show that Log(N) is contained in the logic of a single
reflexive point.

3 Recall that a frame (W,R) is serial if for each s ∈W there
exists t ∈W such that R(s, t). Show that the logic of any
class C of serial frames is contained in the logic of a single
reflexive point.
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Note that two different frame classes can have the same logic.
For example, let C and Cirref be the classes of all frames and all
irreflexive frames, respectively.

As we know from Part I (Lemmas 32 and 33) every frame is a
p-morphic image of an irreflexive frame. Therefore, a formula is
valid in the class of all frames iff it is valid in the class of all
irreflexive frames.

This means that Log(C) = Log(Cirref). (This is just a different
way of formulating Theorem 34 of Part I.)
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Maximal logics

There exists a characterization of the ‘maximal’ logics.

Theorem 4

Let C be a non-empty class of frames. Then Log(C) is contained
in the logic of a single reflexive point or Log(C) is contained in
the logic of a single irreflexive point.

Proof.

Exercise. Use (3) of Exercise 3.

This theorem is known as the Makinson theorem.
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David Makinson (LSE)
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Log(C)

Log(∅)

Log(F) Log(F ′)

Figure: The lattice of logics

C is the class of all frames. F is one reflexive point, F ′ is one
irreflexive point.
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We have seen in Part I that for each A,B the formula
2(A→ B)→ (2A→ 2B) is valid in every Kripke frame.

Exercise 5

1 Recall the proof of this fact.
2 Prove that if formulas A and A→ B are valid in a frame
F , then the formula B is also valid in F .

3 Prove that if a formula A is valid in a frame F , then the
formula 2A is also valid in F .

Now we will give a formal syntactic definition of (normal)
modal logics.
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By a propositional tautology in the modal language we will
mean any ‘instance’ of valid propositional formulas (tautologies
in the propositional language).

E.g., p→ (q → p) is a tautology in the propositional language.
Therefore, A→ (B → A) is a propositional tautology in the
modal language (for each modal formulas A,B).

E.g., p ∨ ¬p is a tautology in the propositional language. So,
A ∨ ¬A is a propositional tautology in the modal language (for
each modal formula A).

Exercise 6

Are 2p ∨ ¬2p and 2p ∨2¬p propositional tautologies in the
modal language?
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Normal modal logics

Definition 7

A normal modal logic (if it is clear from the context we will drop
the worlds ‘normal’ and ‘modal’) L is a set of formulas that
contains all propositional tautologies, the so called K-axioms:

2(A→ B)→ (2A→ 2B)

and is closed under the rules of

• modus ponens (MP): A, A→ B
B

• necessitation (N): A
2A
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This means that L is a set of formulas such that for each A,B
the formula 2(A→ B)→ (2A→ 2B) ∈ L and

(1) if A ∈ L and A→ B ∈ L, then B ∈ L

(2) if A ∈ L, then 2A ∈ L.

Let L be a modal logic. Instead of A ∈ L we often write `L A
and will read ‘A is a theorem of L’.

The collection of all formulas is called the inconsistent logic.
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Proposition 8

For each class C of frames, Log(C) is a normal modal logic.

Proof.

Exercise.

The inconsistent logic is equal to Log(∅).

Let K be the set of all formulas that we can generate starting
from the propositional tautologies and K-axioms by applying
(MP) and (N). We can show that K be the smallest normal
modal logic (exercise).
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This means that A ∈ K (`K A) iff if there are formulas
A1, . . . An such that

• An = A
• each Ai (1 ≤ i ≤ n) is either

– a propositional tautology
– a K-axiom
– or is obtained from some of A1, . . . , Ai−1 by (MP) or (N).
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Example

Let us prove `K 2(A ∧B)→ 2A.
`K A ∧B → A, (Propositional tautology)
`K 2(A ∧B → A), (N)
`K 2(A ∧B → A)→ (2(A ∧B)→ 2A), (K-axiom)
`K 2(A ∧B)→ 2A (MP).

Exercise 9
1 Prove that `K A→ B implies `K 2A→ 2B.
2 Prove that `K A→ B implies `K 3A→ 3B.
3 Prove that `K 2(A ∧B)↔ 2A ∧2B.
4 Prove that `K 3(A ∨B)↔ 3A ∨3B.
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We will be using the following simple proposition throughout.

Proposition 10
1 If a modal formula A→ B is a propositional tautology,

then `K A implies `K B.
2 `K A and `K B imply `K A ∧B.
3 If `K A→ B and `K B → C, then `K A→ C.
4 `K A→ B and `K C → D, then `K (A ∧ C)→ (B ∧D).

Proof.

We only prove (2) and (3). Proofs for (1) and (4) are similar.
`K A→ (B → (A ∧B)), (Propositional tautology)
`K A ∧B, from `K A and `K B by applying (MP) twice.

`K [(A→ B)∧ (B → C)]→ (A→ C), (Propositional tautology)
`K A→ C, by `K A→ B, `K B → C, (2) and (MP).
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Recall that Cref is the class of all reflexive frames. We want to
find an axiomatic system that as we will see later characterizes
Log(Cref).

Let KT be the set of formulas that we can generate starting
form K-axioms, the reflexivity axiom 2A→ A and applying the
rules of (MP) and (N).

This we denote by KT = K + (2A→ A).

Then KT is the smallest normal modal logic is the smallest
extension of K that contains the reflexivity axiom (exercise).

In the same way we can define the logics
K4 = K + (2A→ 22A), S4 = K + (2A→ A,2A→ 22A)
(‘KT4’) If you also add A→ 23A, you get S5.

See Chagrov and Zakharyaschev p. 116 or Blackburn et al.
p. 193 for a longer list.
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Definition 11

We say that a logic L is sound with respect to a frame class C if
L ⊆ Log(C). That is, if every formula in L is valid in every
frame in C.

We say that a logic L is complete with respect to a frame class C
if Log(C) ⊆ L. That is, if every formula valid in every frame in
C belongs to L.

Next we will discuss the canonical model construction. This
construction is used for proving completeness of various normal
modal logics and is certainly one of the most well-known and
well-applied methods of modal logic.
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The method of canonical models was introduced in 1966 by D.
Scott and J. Lemmon (1930-1966) and independently by
Makinson (1966), Creswell (1967) and Schütte (1968).

Dana Scott
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Soundness and completeness for K

We are going to show that

Theorem 12

A formula is a theorem of K iff it is valid in every Kripke
frame. That is, Log(C) = K, where C is the class of all frames.

Later, we will prove the same result for other normal modal
logics.

‘⇒’ is called soundness (proofs are sound: they do not prove
false things).

‘⇐’ is called completeness (the proof system can prove all valid
formulas).

So we get a syntactic ‘handle’ on truth.
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Soundness of K (easy)

Proposition 13

Any theorem of K is valid in every Kripke frame.

Proof.

Follows from Exercise 5

Completeness is harder. . .
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Consistency

Let Γ (Gamma) be a set of formulas (maybe infinite!). The
following definition is good for any normal modal logic L.

Definition 14

If A is a formula, Γ `L A means: `L (B1 ∧ . . . ∧Bn)→ A for
some formulas B1, . . . , Bn ∈ Γ.

Idea: Γ `L A says that A follows (is provable) from assumptions
in Γ. These assumptions need not be valid.

Example: {p, p→ q} `K q,
because (p ∧ (p→ q))→ q is a propositional tautology, so that
`K (p ∧ (p→ q))→ q).
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Definition 15

Γ is said to be L-consistent if Γ 6`L ⊥.

For now, ‘consistent’ will mean K-consistent.

Consistency is one of our most vital notions.

27 / 83



Satisfiable sets are consistent

Definition 16

For a world t of a model M, we write M, t |= Γ
if M, t |= B for all B ∈ Γ.

Γ is said to be satisfiable if M, t |= Γ for some model M and
some world t of M.

This just generalises ‘satisfiability’ from formulas to (possibly
infinite) sets of formulas.

Exercise 17

Show that if a set Γ of formulas is satisfiable then it is
consistent.
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Proving completeness

To show completeness it is (more than) enough to show the
converse of Exercise 17.

Theorem 18 (completeness for K)

Any consistent set is satisfiable.

For, if A is valid, the set {¬A} isn’t satisfiable. By the theorem,
it must be inconsistent: `K (¬A→ ⊥). So `K ¬¬A.

But ¬¬A→ A is a propositional tautology, so is a K-axiom. So
by (MP) (a rule of K), we obtain that `K A, and A is a
theorem of K, as required.
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So let Γ0 be a (K-)consistent set of formulas. We have to build
a model of Γ0.

What will the model be made of?

Answer: syntactic objects, namely ‘maximal consistent’ sets of
formulas.
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The idea

Let M = (W,R, h) be any model, and t ∈W a world of it.

As we said (Exercise 17), the set (say Γt) of all formulas true at
t in M is consistent.

And it contains A or ¬A, for any formula A. So (exercise) no
larger set is consistent. It is maximal consistent.

We try to represent t by this set Γt. (It doesn’t matter what t
actually is, after all.)

Replace each t in M by its Γt. We get a new set of worlds:
W ′ = {Γt : t ∈W}.

W ′ is made of (maximal consistent) sets of formulas! It is
syntactic.

31 / 83



Recovering h

Suppose we forget which t each Γt came from, and just take W ′

as a set of sets of formulas. Can we recover h and R?

First, h. Let p be an atom. We know, for any t ∈W :

t ∈ h(p) ⇐⇒ M, t |= p ⇐⇒ p ∈ Γt.

So we can let h′(p) = {Γ ∈W ′ : p ∈ Γ}. Then p is true at Γ iff
it’s in Γ!

This is the h′ we wanted, as t ∈ h(p) iff Γt ∈ h′(p) (check it!)
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Recovering R

Now for R. In M, we know if R(t, u) and M, t |= �A then
M, u |= A.

That is, if R(t, u) and 2A ∈ Γt then A ∈ Γu.

So why not try: for Γ,∆ ∈W ′, let R′(Γ,∆) iff for any A, if
2A ∈ Γ then A ∈ ∆ (‘delta’).

Here, we only get R(t, u)⇒ R′(Γt,Γu), so this is perhaps
‘bigger’ than the R′ we really wanted.

Anyway, we obtain a model M′ = (W ′, R′, h′).
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M′ is well-behaved

We may not expect �A ∈ Γt ⇒M′,Γt |= 2A —R′ may be too
big.

But we get it anyway! This is because R′ is just small enough
to give:

Exercise 19

For any formula A and Γt ∈W ′, show M′,Γt |= A iff A ∈ Γt.
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(Hint.) The proof goes via an easy induction, using that for all
Γt,∆u ∈W ′ and all formulas A,B:

• > ∈ Γt

• A ∈ Γt and B ∈ Γt iff A ∧B ∈ Γt

• ¬A ∈ Γt iff A /∈ Γt

• if �A ∈ Γt and R′(Γt,∆u) then A ∈ ∆u

• if �A /∈ Γt then there is ∆u with R′(Γt,∆u) and A /∈ ∆u.

These properties are easily seen to be true (work out the
details).
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The real story

This is all very well, but we needed a model M to start with.
We’re given only a consistent set Γ0, and we have to make a
model of it.

But this M′ gives us a clue: why not take all maximal
consistent sets as the worlds!

Set up h′, R′ as above.

Establish the 5 properties just listed (dry but necessary). Then
we can prove M′,Γ |= A iff A ∈ Γ.

Next, show Γ0 is contained in some maximal consistent set Γ.
Then every formula of Γ0 will be true at Γ! We will have our
model.
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Maximal consistent sets

Definition 20

A set Γ of formulas is said to be maximal consistent (a ‘MCS’)
if it is consistent but no larger set is consistent (always relative
to K here).

Proposition 21 (Lindenbaum’s lemma)

Any consistent set Γ0 extends to a MCS.
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Proof.

Enumerate all L-formulas, as A0, A1, . . .. We define a chain
Γ0 ⊆ Γ1 ⊆ · · · of consistent sets. Γ0 is given, and is consistent.
Inductively, define

Γn+1 =

{
Γn ∪ {An} if this is consistent
Γn otherwise.

Then each Γn is consistent. Their union, Γ, is therefore
consistent too (for a proof of ⊥ from Γ would be a proof from
some Γn).
Γ is maximal consistent. For, let A be a formula with A /∈ Γ.
We know A = An for some n. By construction, Γn ∪ {A} is
inconsistent (else Γn+1 = Γn ∪ {A} ⊆ Γ). So Γ ∪ {A} is
inconsistent. This means that no set bigger than Γ is consistent.
And Γ contains Γ0.
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Properties of MCSs

Next we discuss some important properties of MCSs.

Lemma 22

1 If Γ is consistent and A is a formula, then at least one of
Γ ∪ {A}, Γ ∪ {¬A} is also consistent.

2 If Γ is MCS, then A ∈ Γ or ¬A ∈ Γ.
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Proof.

(1) Otherwise, there are B1, . . . , Bn, C1, . . . , Cm ∈ Γ with
`K (B1 ∧ . . . ∧Bn ∧A)→ ⊥ and `K (C1 ∧ . . . ∧Cm ∧ ¬A)→ ⊥.

So `K (B1 ∧ . . . ∧Bn)→ ¬A and `K (C1 ∧ . . . ∧ Cm)→ A
(instance of propositional tautology).

Thus, `K (B1 ∧ . . . ∧Bn ∧ C1 ∧ . . . ∧ Cm)→ (A ∧ ¬A) (instance
of propositional tautology), and therefore,
`K (B1 ∧ . . . ∧Bn ∧ C1 ∧ . . . ∧ Cm)→ ⊥.

So Γ is inconsistent: contradiction.

(2) If A,¬A ∈ Γ then as `K (A ∧ ¬A)→ ⊥, Γ `K ⊥, so Γ is
inconsistent. So at most one of them is in Γ.

By (1), Γ ∪ {A} or Γ ∪ {¬A} is consistent. By maximality,
Γ = Γ ∪ {A} or Γ = Γ ∪ {¬A}. So A ∈ Γ or ¬A ∈ Γ.
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Properties of MCSs

Lemma 23

Let Γ be a MCS. Then for all formulas A,B the following holds:

1 Γ `K A iff A ∈ Γ.

2 A,B ∈ Γ iff A ∧B ∈ Γ
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Proof.

(1) If A ∈ Γ, then as `K (A→ A). So we have Γ `K A by
definition.

Conversely, suppose Γ `K A. So there exist B1, . . . , Bn ∈ Γ such
that `K (B1 ∧ · · · ∧Bn)→ A. This means that
`K (B1 ∧ · · · ∧Bn ∧ ¬A)→ ⊥.

By Lemma 22(2), we have that A ∈ Γ or ¬A ∈ Γ. Suppose
A /∈ Γ. Then ¬A ∈ Γ. But this implies that Γ is inconsistent —
contradiction. Thus, A ∈ Γ.

(2) If A∧B ∈ Γ, then as `K (A∧B → A), we have Γ `K A. By
1st part, A ∈ Γ. Similarly, B ∈ Γ.

If A,B ∈ Γ then as `K (A ∧B)→ (A ∧B), Γ `K A ∧B, so
A ∧B ∈ Γ.
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Canonical model

Now let W = {all MCSs}.

We write Γ,∆ for elements of W .

Define R(Γ,∆) iff for any formula A,
if �A ∈ Γ then A ∈ ∆.

For any atom p ∈ L, define
h(p) = {Γ : p ∈ Γ}.

This is just as before.

We now have a model M = (W,R, h). It is called the canonical
model for K.

It is very important and we will study it at some length.
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Lemma 24 (truth lemma)

For each Γ ∈W and each formula A:

M,Γ |= A iff A ∈ Γ
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Proof.

By induction on A. For >, we have M,Γ |= > and (exercise)
> ∈ Γ. The case for A an atom is by definition of h.

Inductively, assume the lemma for A,B.

For ¬A, we have M,Γ |= ¬A iff M,Γ 6|= A, iff (inductive
hypothesis) A /∈ Γ, iff (by lemma 22, as Γ is maximal
consistent) ¬A ∈ Γ.

And M,Γ |= A ∧B iff M,Γ |= A and M,Γ |= B, iff
(inductively) A ∈ Γ and B ∈ Γ, iff (lemma 23) A ∧B ∈ Γ.

Now the big case: �A.

Suppose �A ∈ Γ. By definition of R, for any ∆ ∈W with
R(Γ,∆), we have A ∈ ∆. So (inductively) M,∆ |= A. By
definition of ‘|=’, we see that M,Γ |= �A.
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continuation.

Conversely, if �A /∈ Γ, then consider the set

∆0 = {¬A} ∪ {B : �B ∈ Γ}.

This is consistent.

For otherwise, `K (B1 ∧ . . . ∧Bn ∧ ¬A)→ ⊥, for some
�B1, . . . ,�Bn ∈ Γ.

So `K (B1 ∧ . . . ∧Bn)→ A.

Crucially, by (N), `K �(B1 ∧ . . . ∧Bn → A). Using the
normality axiom repeatedly (work out the details), we then get
`K (�B1 ∧ . . . ∧�Bn)→ �A. So Γ `K �A. By lemma 23,
�A ∈ Γ, contradicting our assumption.
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continuation.

By Lindenbaum’s Lemma (proposition 21), there is a MCS
∆ ⊇ ∆0. Then ¬A ∈ ∆. By lemma 23, A /∈ ∆. By the
induction hypothesis, M,∆ 6|= A.

But as ∆0 ⊆ ∆, we have �B ∈ Γ⇒ B ∈ ∆, and so R(Γ,∆). So
M,Γ 6|= �A, as required.
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Completeness is proved

For if Γ0 is consistent, extend it to a MCS Γ (proposition 21).

By the truth lemma, M,Γ |= A for every A ∈ Γ0. So Γ0 has a
model.
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We showed any K-theorem is valid (= valid in the class of all
frames), and vice versa: soundness and completeness for K over
the class of all frames. K is ‘the’ modal logic of all frames.

We want to extend this: to find sound and complete
axiomatisations for other classes of frames, such as

• the class of all reflexive frames (satisfying ∀xR(x, x)).

• the class of all transitive frames (satisfying
∀xyz(R(x, y) ∧R(y, z)→ R(x, z))).

• the class of all dense/discrete linear frames (useful in
temporal logic)

• etc.!
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Examples

Recall
KT = K + (�A→ A) (for all A)
K4 = K + (�A→ ��A) (for all A)

Proposition 25

1. K is sound over the class of all frames.
2. KT is sound over the class of all reflexive frames.
3. K4 is sound over the class of all transitive frames.

Proof.

1. We know this.
2. We only need to show additionally that �A→ A is valid in
all reflexive frames, which is easy.
3. Exercise!
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Completeness, canonical model

Let L be a normal modal logic.

Question: Can we generalise the proof of completeness for K to
L?

All our completeness work goes through for L.

• The notion of (maximal) consistency works for L.

• The canonical model M (of all maximal L-consistent sets)
exists, and the truth lemma holds for it.

• And any L-consistent set extends to a MCS.

So given any L-consistent formula, we can build a model of it
— the canonical L-model, M.

But is M’s frame a frame where all L-theorems are valid? If it
is, we have completeness.
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Eg: the class Cref of reflexive frames

We know that all formulas of the form �A→ A are valid in
reflexive frames.

So KT = K + (�A→ A) is sound over Cref .

Is it complete for Cref?

Proposition 26

The canonical model M for KT is based on a reflexive frame.
So KT is sound and complete over Cref .
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Proof.

If Γ is a world of M, we want R(Γ,Γ). By definition of R, that
means �A ∈ Γ must force A ∈ Γ (for any A).

But Γ is a MCS. So for any A, Γ `KT A iff A ∈ Γ (lemma 23 for
KT).

Now if Γ `KT �A, then Γ `KT (�A→ A) (axiom of KT), so
Γ `KT A and, thus, A ∈ Γ.

So R is indeed reflexive!

Exercise 27

Prove using the canonical model construction that the logics
K4, S4 and S5 are sound and complete (with respect to which
frame classes?).
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Sahlqvist’s theorem (1975)

Probably the best generalisation of proposition 26 is by
H. Sahlqvist.

Recall from Part I the definition of a Sahlqvist formula (Part I,
page 38)
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Sahlqvist’s theorem

Theorem 28

Let A be a Sahlqvist formula. Let LA be the smallest modal logic
that contains K-axioms, axiom A and is closed under (MP) and
(N). Then A is valid in the frame of the canonical model for L.
(We say ‘A is canonical’. See Blackburn et al. page 204.)

This together with the Sahlqvist correspondence theorem (Part
I, page 41), give us that if A is a Sahlqvist formula, then LA is
sound and complete for the class CL of the frames with the
corresponding first-order property! And, moreover, by the
Sahlqvist algorithm this first-order property can be extracted
effectively.
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Finite model property

Suppose we proved that a normal modal logic L is complete
with respect to a class C of Kripke frames; that is L = Log(C).

The class C might be huge. It might consist of infinitely many
infinite frames. So this still does not give us a criterion for
deciding whether a given formula A belongs to L.

However, if we manage to show a stronger version of
completeness—a completeness with respect to a class of finite
frames—then, as we will see below, we are one step closer to
having such a criterion.
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Definition 29

We will say that a normal modal logic L has the finite model
property if there exists a (not necessarily finite) class C of finite
frames such that L = Log(C).

It would be more logical to call this property the finite frame
property, as some authors do. But the finite model property is
a fixed terminology by now. So we will stick to it.
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There are a few methods for proving finite model property for
modal logics.

The most popular and widely applied among those are filtration
and selective filtration.

In what follows we will discuss the method of filtration and
after that we will sketch the basic idea of selective filtration.
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Subformulas

Subformulas are easier to recognize than to define!

Thinking of the formation tree of A, the subformulas are its
subtrees.

(The proper definition is by induction on A; see Blackburn et
al.)

E.g., the subformulas of A = ¬�¬(p ∧�(> ∧ p)) are:
p,>, p (two distinct ps!), > ∧ p, �(> ∧ p),
p ∧�(> ∧ p), and also:

¬(p ∧�(> ∧ p)),
�¬(p ∧�(> ∧ p)),
¬�¬(p ∧�(> ∧ p)) = A.
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Filtration

We will prove the finite model property for K:

Theorem 30 (Filtration theorem)

Let A be a satisfiable modal formula. Then A has a finite model
— in fact, one with at most 2n worlds, where n is the number of
subformulas of A.
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Why does this imply the finite model property for K?

Let Cfin be the class of all finite frames. Then obviously
K ⊆ Log(Cfin).

Now suppose A /∈ K. Then, by the completeness of K, there
exists a model (for example the canonical model), M such that
¬A is satisfied in M.

By theorem 30, ¬A is satisfied in a finite modelM′. This means
that A is not valid in Cfin, i.e., A /∈ Log(Cfin). So K = Log(Cfin).
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Why is the finite model property true?

The formal proof may look frightening, but is just what we get
from writing down the picture-idea in notation.
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Proof of finite model property

Fix a model M = (W,R, h) satisfying A.

Define an equivalence relation ∼ on W by

t ∼ u ⇐⇒ (M, t |= B ⇔M, u |= B
for all subformulas B of A).

Let W ′ be the set of ∼-equivalence classes. Then |W ′| ≤ 2n.
For, any two worlds making true the same subformulas of A are
∼-equivalent. So there are at most as many ∼-inequivalent
worlds as there are sets of subformulas — that is, at most 2n.
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Define R′ on W ′ by: R′(X,Y ) iff R(t, u) for some t ∈ X,u ∈ Y .
(Here, X,Y ∈W ′.)

For each atom occurring in A we let

h′(p) = {X ∈W ′ : M, t |= p for some t ∈ X}.

We have a finite modelM′ = (W ′, R′, h′). It is called a standard
filtration of M.

But is it a model of A?
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Lemma 31 (Filtration lemma)

For any subformula B of A,

M′, X |= B ⇐⇒ M, t |= B
for any X ∈W ′ and any t ∈ X.

Proof.

By structural induction on B. Pick X ∈W ′ and t ∈ X.

If B is an atom p, M′, X |= p iff X ∈ h′(p) iff (by
def.) M, u |= p for some u ∈ X, iff M, t |= p) (because X is a
∼-class so all its elements ‘agree’ on p).

If B = >, it’s clear — M′, X |= > and M, t |= >.
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continuation.

The case ∧ is easy. Assume that B ∧ C is a subformula of A.
Then B,C are also subformulas of A; assume (inductively) the
lemma for them. Then

M′, X |= B ∧ C iff M′, X |= B and M′, X |= C, iff (by the
inductive hypothesis) M, t |= B and M, t |= C, iff
M, t |= B ∧ C.

The case of ¬ is similar (exercise).
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continuation.

Finally, suppose that �B is a subformula of A, and assume the
lemma for B (B is also a subformula of A, so can use ind. hyp.).

Assume M′, X |= �B; we prove M, t |= �B.

Pick any u ∈W with R(t, u). Let Y be the ∼-class of u.

By definition of R′ we have R′(X,Y ). By assumption,
M′, X |= �B, so M′, Y |= B.

But u ∈ Y , so inductively, M, u |= B.

This is true for all u with R(t, u). So M, t |= �B.
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continuation.

Now assume M, t |= �B. Take Y ∈W ′ with R′(X,Y ). We
show M′, Y |= B.

By definition of R′, there are t′ ∈ X and u ∈ Y with R(t′, u).

As t′ ∼ t, and �B is a subformula of A, M, t′ |= �B. So
M, u |= B.

Inductively, M′, Y |= B. Because Y was arbitrary (with
R′(X,Y )), we get M′, X |= �B, as required.
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It is obvious that the filtration lemma implies the filtration
theorem (exercise).

Thus we proved that K has the finite model property.

Can we do the same for other normal modal logics?

Sometimes yes, sometimes not.

In the general case we need to prove that the underlying frame
of M′ validates the logic. If we can do it, then the logic has the
finite model property.
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Reflexive frames

We first consider the logic KT of all reflexive frames.

Let A be satisfiable in a model M = (W,R, h) based on a
reflexive frame (W,R). We filtrate it as before. The obtained
finite model then satisfies A.

It is left to be shown that the underlying frame of M′ is
reflexive.
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Thus we need to show that for each element X of M′ we have
R′(X,X).

But this is obvious since for each s ∈ X we have R(s, s) (check
the details).

We deduce that the logic KT has the finite model property.
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Transitive frames

Now let us consider the logic K4 of all transitive frames.

We first note that if we filtrate a model based on a transitive
frame, the relation R′ may no longer be transitive.

Exercise 32

Construct a filtration of a model based on a transitive frame
that is not transitive.

So what do we do?
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We will modify the definition of R′.

For each X,Y ∈W ′ we set

XR∗Y iff M, s |= 2B implies M, t |= 2B ∧B

for each s ∈ X and t ∈ Y and 2B a subformula of A.

Let M′ = (W ′, R∗, h′), where R∗ is as above and W ′ and h′ as
in the standard filtration (slide 65). M′ is called the Lemmon
Filtration.

Lemma 33 (Filtration lemma)

For any subformula B of A,

M′, X |= B ⇐⇒ M, s |= B
for any X ∈W ′ and any s ∈ X.
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Proof.

We first show that if s, t ∈W , s ∈ X, t ∈ Y and R(s, t), then
R∗(X,Y ).

So suppose for a subformula 2B of A we have M, s |= 2B. We
need to show that M, t |= 2B ∧B.

Since R(s, t), we have that M, t |= B.

Now if M, t 6|= 2B, then there exists u ∈W such that R(t, u)
and M, u 6|= B. But since R is transitive we have R(s, u). So
M, u 6|= B contradicts M, s |= 2B.

Thus, R(s, t) implies R∗(X,Y ).
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continuation.

Next we proceed by structural induction on B. The boolean
cases are simple (check!).

Now let M, s |= 2B, where 2B is a subformula of A. Then for
each Y such that R∗(X,Y ) we have M, t |= 2B ∧B for t ∈ Y .

By the ind hyp M, t |= B implies M′, Y |= B and thus
M′, X |= 2B.

Finally, assume M, s 6|= 2B. Then there exists t ∈W such that
R(s, t) and M, t 6|= B. As we showed above, R(s, t) implies
R∗(X,Y ) for t ∈ Y . Moreover, by the ind hyp, M′, Y 6|= B.
Thus, M′, X 6|= 2B.
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Finally, we need to check that R∗ is transitive.

Let R∗(X,Y ) and R∗(Y,Z) and suppose M, s |= 2B, for s ∈ X
and 2B a subformula of A. Then M, t |= 2B ∧B, for t ∈ Y .
Then M, t |= 2B implies M, u |= 2B ∧B for u ∈ Z and thus
R∗(X,Z).

Note that in the proof of transitivity of R∗ we have not used
that R is transitive. The transitivity of R was only used in the
filtration lemma.

So we proved that K4 has the finite model property.

Exercise 34

Prove using filtration that S4 and S5 have the finite model
property.
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Selective filtration

Next we sketch the basic idea of selective filtration – another
powerful method for proving the finite model property.

If the main idea of filtration is to identify points (split a big
model into finitely many blocks), the idea of selective filtration
is to select finitely many points from a big model in such a way
that by restricting the relation and assignment to this set of
selected points we obtain a model still satisfying a given
formula.

For example we might have a huge model M satisfying the
formula 3p. This means that there are points s and t in M
such that R(s, t) and M, t |= p. Then obviously we can just
select the points s and t, restrict the relation and assignment to
{s, t} and the obtained 2-element model will satisfy 3p.
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We will illustrate the selective filtration method on modal logic
S5 of all frames with an equivalence relation.

Let M = (W,R, h) be a model with R being an equivalence
relation and A a formula such that M, s |= A for some s ∈W .

For each 2B subformula of A we select a point t ∈W such that
R(s, t) and M, t 6|= B (if such a point exists).

Let S be the set of all selected points together with the point s.
We let M′ be the model obtained by restricting h and R to S.
Then |S| ≤ n+ 1, where n is the number of subformulas of A
(why?).
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We first show that for each u, v ∈ S we have R(u, v). Indeed, if
u, v ∈ S, then R(s, u) and R(s, v). Since R is symmetric we
have R(u, s) and by transitivity R(u, v).

Lemma 35 (truth lemma)

For each subformula B of A and each u ∈ S we have:

M, u |= B iff M′, u |= B.

Proof.

By structural induction on B. The boolean cases are simple
(check!).

Suppose M′, u 6|= 2B. Then there exists t ∈ S such that R(u, t)
and M′, t 6|= B. But, by ind hyp, this means that M, t 6|= B and
thus M, u 6|= 2B.
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continuation.

Now let M, u 6|= 2B, then there is t ∈W such that R(u, t) and
M, t 6|= B.

But u ∈ S so we have R(s, u). By the transitivity of R we get
R(s, t). The point t may not belong to S.

But by the construction of S, there is t′ ∈ S such that R(s, t′)
and M, t′ 6|= B. By ind hyp, we have M′, t′ 6|= B. Since for each
u, v ∈ S we have R(u, v) we obtain that R(u, t′). This means
that M′, u 6|= 2B.
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To finish the proof of the finite model property of S5 we only
need to note that by restricting the equivalence relation R to S
we obtain a frame with an equivalence relation. But this is fairly
obvious. In fact, S consists of one equivalence class (why?).

Thus, we proved that S5 has the finite model property.

Note that the size of the model satisfying the formula A
obtained via selective filtration, is n+ 1 where n is the number
of subformulas of A. Recall that the size of the model, satisfying
A obtained via standard and Lemmon filtrations, is 2n.
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