Introduction to Modal Logic. Exercise class 2

11 September 2017

Exercise 1. Show that the roots of the two models¹ in Figure 2.5 of [BdRV] are not bisimilar.

Exercise 2. Consider the binary modality U ('until') with the following semantics

 $\mathbb{M}, s \Vdash \phi \cup \psi \text{ iff } \left\{ \begin{array}{l} \text{there is a } t \text{ such that } Rst \ \& \ \mathbb{M}, t \Vdash \phi, \text{ and} \\ \text{for every } u \text{ such that } Rsu \ \& \ Rut \text{ it holds } \mathbb{M}, u \Vdash \psi. \end{array} \right.$

Is U expressible in the language of basic modal logic? And in the language of basic temporal logic?

Hint: consider the models in [BdRV, Exercise 2.2.4].

Exercise 3. Consider the modality \circ with the following semantics

 $\mathbb{M}, s \Vdash \circ \phi \iff \exists t \in W \ (sRt \And \neg(tRt) \And \mathbb{M}, t \Vdash \phi).$

Is \circ expressible in the language of basic modal logic?

Exercise 4. Let $\mathbb{M} = (W, R, V)$ be a Kripke model, and let X be a subset of W. We define \mathbb{M}_X as the restricted model (X, R_X, V_X) , where $R_X := R \cap (X \times X)$ and $V_X(p) := V(p) \cap X$. We call $X \subseteq W$ hereditary if $s \in X$ and Rst imply $t \in X$; in this case we say that \mathbb{M}_X is a generated submodel of \mathbb{M} .

- (1) Show that $\Delta_X := \{(x, x) \mid x \in X\}$ is a bisimulation between \mathbb{M}_X and \mathbb{M} iff X is hereditary.
- (2) Show that if f is a bounded morphism from \mathbb{M} to \mathbb{M}' , then the set $f[W] := \{f(s) \mid s \in W\}$ is a hereditary subset of W'.

Exercise 5. A bounded morphism between two frames $\mathbb{F} = (W, R)$ and $\mathbb{F}' = (W', R')$ is a map $f: W \to W'$ such that, for all $s, t \in W$ and $t' \in W'$: (forth) Rst implies R'f(s)f(t);

(back) R'f(s)t' implies the existence of a $t \in W$ with Rst and f(t) = t'. Now let f be such a bounded morphism.

- (1) Show that for any valuation V' on \mathbb{F}' one can find a valuation V on \mathbb{F} such that f (or rather, its graph $\{(s, f(s)) \mid s \in W\}$) is a bisimulation between the models (\mathbb{F}, V) and (\mathbb{F}', V') .
- (2) Show that if f is surjective, then $\mathbb{F} \Vdash \phi$ implies $\mathbb{F}' \Vdash \phi$, for any modal formula ϕ .

¹We take the set of proposition letters to be empty here.

(3) Prove that irreflexivity is not modally definable. That is, show that there is no modal formula ϕ such that ϕ is valid on exactly the frames with an irreflexive accessibility relation.

Exercise 6. Which of the following frame properties are preserved (reflected) by the operations of forming generated subframes, p-morphic images, disjoint unions?

- (1) reflexivity;
- (2) transitivity;
- (3) irreflexivity;
- (4) converse seriality $(\forall x \exists y Ryx)$;
- (5) having cardinality at least n, for some natural number n;
- (6) having cardinality at most n, for some natural number n.

Exercise 7. Show that the following frame properties cannot be defined in the basic modal language:

- (1) converse seriality;
- (2) having cardinality at least n, for some natural number n;
- (3) having cardinality at most n, for some natural number n;
- (4) acyclicity: 'there is no finite path (of non-zero length) from any point to itself'.

Exercise 8 (BdRV, Ex. 2.2.8). Consider a non-empty family $\{Z_i | i \in I\}$ of bisimulations between two models \mathbb{M} and \mathbb{M}' .

- (1) Show that the union $\bigcup \{Z_i | i \in I\}$ is again a bisimulation;
- (2) Use the previous fact to show that there exists a greatest bisimulation between \mathbb{M} and \mathbb{M}' .
- (3) Show that, in the case M = M', this greatest bisimulation is an equivalence relation.
- (4) Can you always find a smallest bisimulation between \mathbb{M} and \mathbb{M}' ?

Exercise 9 (*). Let $\mathbb{M} = (W, R, V)$ be a Kripke model; we denote the greatest bisimulation relation on \mathbb{M} (see Exercise 8(3)) simply as \mathfrak{L} .

- (1) Show that there is a model \mathbb{M}^* such that the greatest bisimulation between \mathbb{M} and \mathbb{M}^* is in fact (the graph of) a surjective bounded morphism π . Hint: take a (suitably defined) quotient of \mathbb{M} under \mathfrak{L} .
- (2) Show that \mathbb{M}^* is uniquely determined modulo isomorphism.
- (3) Prove that $\mathbb{M}, s \hookrightarrow \mathbb{M}', s'$ if and only if there is an isomorphism from \mathbb{M}^* to $(\mathbb{M}')^*$ mapping $\pi(s)$ to $\pi'(s')$.