Introduction to Modal Logic. Exercise class 4

25 September 2017

Exercise 1. Compute both the largest and the smallest filtration of the model below through each of the following sets

Exercise 2 (BdRV, Ex. 2.3.5). This exercise is about the so-called transitive (or Lemmon) filtration.

- (1) Show that not every filtration of a transitive model is transitive.
- (2) Proof Lemma 2. 24 of |BdRV|. That is, show that the relation R^t defined there is indeed a filtration (of transitive models), and that any filtration of a transitive model that makes use of the relation R^t is guranteed to be transitive.

Exercise 3 (BdRV 2.3.1). Find two models \mathbb{M} and \mathbb{M}' and states w and w' in these models which are not bisimilar but $\mathbb{M}, w \bigoplus_n \mathbb{M}', w'$ for all $n \in \omega$.

Exercise 4. Let \mathbb{M} and \mathbb{M}' be regular PDL-models, so that we may represent them as $\mathbb{M} = (W, (R_a)_{a \in A}, V)$ and $\mathbb{M}' = (W', (R'_a)_{a \in A}, V')$, where A is the set of atomic programs. Show that if Z is a bisimulation between (W, R_a, V) and (W', R'_a, V') for every atomic program $a \in A$, then Z is a bisimulation between (W, R_a, V) and (W, R_π, V) and (W', R'_π, V') for every PDL-program π .

Exercise 5. Which of the following properties of frames are preserved by taking suitable filtrations of Kripke models?

- (1) reflexivity;
- (2) symmetry;
- (3) seriality;

- (4) directedness: $\forall x_0 x_1 x_2 ((Rx_0 x_1 \land Rx_1 x_2) \rightarrow \exists y (Rx_1 y \land Rx_2 y));$
- (5) density: $\forall x_1 x_2 (x_1 R x_2 \rightarrow \exists y (R x_1 y \land R y x_2));$
- (6) every world sees a reflexive world: $\forall x \exists y (Rxy \land Ryy)$.

Exercise 6. We say that a class of models K has the property (\star) if any formula in the language of basic modal logic which is satisfiable in some K-model is also satisfiable in a finite K-model. Show that the following classes of models has the (\star) -property.

- (1) The class of reflexive models;
- (2) The class of transitive models;
- (3) The class of directed models;
- (4) The class of models with no branching to the right.

Exercise 7. Compute the standard translations of the following formulas

- (1) $\Diamond p \to \Diamond \Diamond p;$
- (2) $\Diamond \Box p \lor \Box p;$
- (3) $\Box(\Box p \to q) \lor \Box(\Box q \to p);$
- (4) $(p \land \Box(\Diamond p \to \Box q)) \to \Diamond \Box \Box q;$
- (5) $\Box(\Box p \to p) \to \Box p;$
- (6) $[\pi^*](p \to [\pi]p) \to (p \to [\pi^*]p).$

Exercise 8. (*) Is it possible to find a pair of pointed Kripke models (\mathbb{M}, s) and (\mathbb{M}', s') one of which is finitely branching such that $\mathbb{M}, s \iff \mathbb{M}', s'$ but $\mathbb{M}, s \notin \mathbb{M}', s'$?