Introduction to Modal Logic. Exercise class 6

9 October 2017

Lemma 1 (Key Lemma). Let $\mathbb{M} = (S, R, V)$ be a Kripke model. Then for every modal formula ϕ , and for every ultrafilter $u \in Uf(S)$ we have

$$\mathbb{M}^*, u \Vdash \phi \text{ iff } \llbracket \phi \rrbracket^{\mathbb{M}} \in u.$$
(1)

Exercise 1. The key lemma is proved by induction on ϕ . In this exercise we focus on the hard part of the inductive case for the formula $\Diamond \phi$. That is, assume as inductive hypothesis that (1) holds for the formula ϕ .

- (a) Show that $[\![\diamondsuit \phi]\!]^{\mathbb{M}} = \langle R \rangle [\![\phi]\!]^{\mathbb{M}}$.
- (b) Suppose that $\langle R \rangle X \in u$, for some set $X \in \mathcal{P}(S)$. Consider the set

$$E := \{X\} \cup \{Y \in \mathcal{P}(S) \mid [R]Y \in u\}.$$

- (b1) Show that E has the finite intersection property.
- (b2) Let $v \in Uf(S)$ be such that $E \subseteq v$. Show that R^*uv and $X \in v$.
- (c) Suppose that $\llbracket \diamondsuit \phi \rrbracket^{\mathbb{M}} \in u$, and prove that $\mathbb{M}^*, u \Vdash \diamondsuit \phi$.

Exercise 2. Prove the key lemma.

Exercise 3. Let $\mathbb{M} = (S, R, V)$ be a Kripke model, let $u \in Uf(S)$ be an ultrafilter and let Σ be a set of modal formulas. Assume that Σ is finitely satisfiable in the set $R^*(u)$ of successors of u, in the model \mathbb{M}^* . Define

$$H := \{ \llbracket \phi \rrbracket^{\mathbb{M}} \mid \phi \in \Sigma \} \cup \{ Y \in \mathcal{P}(S) \mid [R] Y \in u \}.$$

- (a) Show that H has the finite intersection property.
- (b) Let $v \in Uf(S)$ be such that $H \subseteq v$. Show that R^*uv and that $\mathbb{M}^*, v \Vdash \phi$, for all $\phi \in \Sigma$.
- (c) Show that \mathbb{M}^* is m-saturated.

Exercise 4. The *ultrafilter extension* of a Kripke frame $\mathbb{F} = (S, R)$ is defined as the structure $\mathbb{F}^* := (Uf(S), R^*)$.

- (a) Show that if $\mathbb{F}^* \Vdash \phi$ then $\mathbb{F} \Vdash \phi$.
- (b) Show that the frame property $\forall x \exists y(xRy \& yRy)$ is preserved under taking disjoint unions, generated subframes and p-morphic images¹, but is nevertheless not modally definable.

¹That is images under p-morphisms also known as bounded morphisms.

(c)* Give a counterexample showing that the converse implication of (a) does not hold. (Hint: you need to find a formula which expresses a property which is not first-order definable.)

Exercise 5. Recall that a *partial order* on a set W is a binary relation $R \subseteq W^2$ which is reflexive, transitive and anti-symmetric.

- (1) Are partial orders modally definable?
- (2) Are partial orders modally definable within the class of finite Kripke frames?

Exercise 6. Compute the first order correspondents of the following closed formulas.

- (1) $\Box \bot;$
- (2) $\Box \Diamond \top \rightarrow \Diamond \Box \top;$
- (3) $\Diamond \Box \bot \rightarrow \Box \Diamond \bot;$
- (4) $\Box \Diamond \top \rightarrow \Box \bot;$
- (5) $\diamond_P(\diamond_F \Box_P \bot \to \Box_F \bot);$
- (6) $[*](\Diamond \top \rightarrow \langle * \rangle \Box \bot);$