EXERCISE CLASS 08-11-2017: CANONICAL MODELS AND COMPLETENESS-VIA-CANONICITY

- (1) Let L be a normal modal logic and let Γ be an L-MCS. Show that
 - (i) If $\varphi \in \Gamma$ and $\varphi \to \psi \in \Gamma$ then $\psi \in \Gamma$;
 - (ii) $L \subseteq \Gamma$;
 - (iii) For every formula φ either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$;
 - (iv) For every pair of formulas φ and ψ we have that $\varphi \lor \psi \in \Gamma$ iff $\varphi \in \Gamma$ or $\psi \in \Gamma$.
 - (v) For every pair of formulas φ and ψ we have that $\varphi \land \psi \in \Gamma$ iff $\varphi \in \Gamma$ and $\psi \in \Gamma$;
- (2) Let L be a normal modal logic and define a relation R'' on the canonical model for L by

 $R''(\Gamma, \Delta)$ iff $\forall \varphi (\varphi \in \Delta \implies \Diamond \varphi \in \Gamma),$

where Γ and Δ are *L*-MCSs. Show that R'' = R', where R' is the relation

 $R'(\Gamma, \Delta)$ iff $\forall \varphi (\Box \varphi \in \Gamma \implies \varphi \in \Delta),$

where Γ and Δ are *L*-MCSs. Thus, for any normal modal logic *L*, we may define the canonical relation R^L as either R' or R''.

- (3) (a) Show that the normal modal logic $\mathbf{KD} \coloneqq \mathbf{K} + (\Diamond \top)$ is sound and complete with respect to the class of serial Kripke frames, i.e., Kripke frames satisfying the first-order condition $\forall x \exists y (xRy)$.
 - (b) Show that the normal modal logic $\mathbf{KT} \coloneqq \mathbf{K} + (\Box p \to p)$ is sound and complete with respect to the class of reflexive Kripke frames.
 - (c) Show that the normal modal logic $\mathbf{S4} \coloneqq \mathbf{K} + (\Box p \rightarrow p) + (\Box p \rightarrow \Box \Box p)$ is sound a complete with respect to the class of reflexive and transitive Kripke frames.
 - (d) Show that the normal modal logic $\mathbf{KB} \coloneqq \mathbf{K} + (p \to \Box \Diamond p)$ is sound and complete with respect to the class of symmetric Kripke frames.
 - (e) Show that the normal modal logic **Den** := $\mathbf{K} + (\Diamond p \rightarrow \Diamond \Diamond p)$ is sound and complete with respect to the class of dense Kripke frames, i.e., Kripke frames satisfying the first-order condition $\forall x \forall z (xRz \implies \exists y (xRy \land yRz))$. *Hint: This is not so easy*¹.
- (4) Let Γ be a set of formulas (say, in the language of basic modal logic). Prove that if Γ is satisfiable then it is consistent. Can you generalise this to cover L-consistency for an arbitrary normal modal logic L?
- (5) Let L be a normal modal logic. Given a world w in an L-model M, show that the set of formulas $\{\varphi \colon \mathbb{M}, w \Vdash \varphi\}$ is an L-MCS.
- (6) Show that in the canonical model for **K** (or any other consistent normal modal logic L) there exist (L)MCSs Γ and Δ that are incomparable (i.e., we have neither $R^{L}(\Gamma, \Delta)$ nor $R^{L}(\Delta, \Gamma)$).
- (7) (a) Let $\Gamma := \{p, q, p \land q, \Box p, \Box q, \Box (p \land q)\}, \Delta := \{p, \neg q, \Box p\}$, and $\Delta' := \{\Box p, \Box q, \Box (p \land q)\}$ be sets of formulas.
 - (b) Are these sets maximal consistent (in some language)?
 - (c) Let the relation R' on $\{\Gamma, \Delta, \Delta'\}$ and the valuation V' on $\{\Gamma, \Delta, \Delta'\}$ be as defined on the canonical model. Draw the resulting Kripke model.

¹Given **Den**-MCSs Γ and Δ such that $\Gamma R^{\mathbf{Den}} \Delta$ You need to show that the set of formulas $\Sigma_0^- \cup \Sigma_1^-$ is **Den**-consistent, where $\Sigma_0^- \coloneqq \{\varphi \colon \Box \varphi \in \Gamma\}$ and $\Sigma_1^- \coloneqq \{\Diamond \psi \colon \psi \in \Delta\}$. To that end you might find it helpful to show that $\vdash_{\mathbf{K}} \Diamond (p \land q) \to \Diamond p \land \Diamond q$ and that $((p \land q) \to r) \to (p \to (q \to r))$ is a propositional tautology.

Additional exercises

Here are a few additional exercises for those of you who want to know more about the canonical model. They are not part of the core curiculum.

- (8) Let $\mathfrak{M} = (W, R, V)$ be a Kripke model we say that
 - (i) The Kripke model \mathfrak{M} is *tight* if

$$\forall w, w' \in W((\{\varphi \colon \mathfrak{M}, w \Vdash \Box \varphi\} \subseteq \{\varphi \colon \mathfrak{M}, w' \Vdash \varphi\}) \implies wRw');$$

(ii) The Kripke model \mathfrak{M} is *differentiated* if

$$\forall w, w' \in W((\{\varphi \colon \mathfrak{M}, w \Vdash \varphi\}) = \{\varphi \colon \mathfrak{M}, w' \Vdash \varphi\}) \implies w = w');$$

(iii) The Kripke model \mathfrak{M} is *compact* if for every set of formulas Σ have that

$$\exists w(\mathfrak{M}, w \Vdash \Sigma) \quad \text{iff} \quad \forall \Sigma_0 \subseteq_\omega \Sigma \exists w(\mathfrak{M}, w \Vdash \Sigma_0)$$

(iv) The Kripke model ${\mathfrak M}$ is refined if it is both tight and differentiated.

Let L be a consistent normal modal logic. Show that the canonical model \mathfrak{M}^L for L is a refined and compact Kripke model.

(9) (For those that know a bit of topology:) Let L be a consistent normal modal logic and let \mathfrak{M}^L be the canonical model for L. Show that the collection of sets

$$V^{L}(\varphi) = \{ \Gamma \in W^{L} \colon \mathfrak{M}^{L}, \Gamma \Vdash \varphi \},\$$

with φ ranging over the set of formulas in the language of basic modal logic, generates a topology on the set W^L which is compact, Hausdorff and zero-dimensional.