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General comments.

1. The time for this exam is 3 hours (180 minutes).

2. There are 100 points in the exam.

3. Make sure that you have your name and student ID on each of the sheets you are
handing in.
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(1) (20pt) Let (W,R) and (W ′, R′) be Kripke frames.

(a) Define when a map f : W → W ′ is a bounded morphism.

(b) A map f : W → W ′ is called a homomorphism if for each w, v ∈ W we have
Rwv implies R′f(w)f(v). Give an example of two frames (W,R) and (W ′, R′)
and a surjective map f : W → W ′ such that f is a homomorphism, but not a
bounded morphism.

(c) Is validity of modal formulas preserved under surjective homomorphisms? In
other words, if a modal formula ϕ is valid in (W,R) and if f : W → W ′ is a
surjective homomorphism, is ϕ valid in (W ′, R′)? If yes, provide a proof, if not
give a counter-example.

(2) (20pt)

(a) Show, using the Sahlqvist algorithm, that the first-order correspondent of the
formula

♦�p→ ♦p
is the formula

∀x∀y(Rxy → ∃z(Rxz ∧Ryz)).

(b) Show that the modal logic

KO = K + (♦�p→ ♦p)

is canonical. That is, given KO-MCSs Γ,∆ with RKO(Γ,∆), you will need to
find a KO-MCS Θ with RKO(Γ,Θ) and RKO(∆,Θ).

(Hint: You should find Lindenbaum’s lemma useful.)

(c) Deduce that KO is sound and complete with respect to KO-frames.

You are not allowed to use the Sahlqvist completeness theorem.

(3) (20pt)

(a) Show, using filtration, that KO (see Exercise 2) has the finite model property.

(b) Deduce that KO is decidable.

You can assume the facts stated in Exercise 2.
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(4) (20pt)

(a) Define regular frames for PDL.

(b) Let (ω−∗) be the following rule:

If ` ϕ→ [π]nψ for each n ∈ N, then ` ϕ→ [π∗]ψ.

Recall that [π]0p = p and [π]n+1 = [π][π]np.

We say that (ω−∗) is valid on a frame (W,Rπ, Rπ∗) if for any valuation V

(W,Rπ, Rπ∗ , V ) 
 ϕ→ [π]nψ for each n ∈ N implies
(W,Rπ, Rπ∗ , V ) 
 ϕ→ [π∗]ψ.

Let (W,Rπ, Rπ∗) be a (not necessarily regular) frame. Show that we have
Rπ∗ ⊆ (Rπ)∗ iff (ω−∗) is valid on (W,Rπ, Rπ∗).

(5) (20pt) Consider the Kripke frame (W,R), where

W = {u, v, w} ∪ {vn, wn : n ∈ N}
and R is defined as follows:

Ruv, Ruw, Rvvn and Rwwn (for all n ∈ N);

see the figure below. Let A be the collection of all finite and co-finite subsets of W .
Then (W,R,A) is a general frame. Show that

(a) (W,R), u 6
 ♦�p→ �♦p,

(b) (W,R,A), u 
 ♦�p→ �♦p.
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