INTRODUCTION TO MODAL LOGIC. FINAL EXAM

22 DECEMBER 2016 UNIVERSITY OF AMSTERDAM

Name:

UvA Student ID:

General comments.

- 1. The time for this exam is 3 hours (180 minutes).
- 2. There are 100 points in the exam.
- 3. Make sure that you have your name and student ID on each of the sheets you are handing in.
- 4. If you have any questions, please indicate this silently and someone will come to you. Answers to questions that are relevant for anyone will be announced publicly.
- 5. No talking during the exam.
- 6. Cell phones must be switched off and stowed.

	Maximal Points	Your points
Exercise 1	20	
Exercise 2	20	
Exercise 3	20	
Exercise 4	20	
Exercise 5	20	
Total	100	

- (1) (20pt) Let (W, R) and (W', R') be Kripke frames.
 - (a) Define when a map $f: W \to W'$ is a bounded morphism.
 - (b) A map $f: W \to W'$ is called a *homomorphism* if for each $w, v \in W$ we have Rwv implies R'f(w)f(v). Give an example of two frames (W, R) and (W', R') and a surjective map $f: W \to W'$ such that f is a homomorphism, but not a bounded morphism.
 - (c) Is validity of modal formulas preserved under surjective homomorphisms? In other words, if a modal formula φ is valid in (W, R) and if $f : W \to W'$ is a surjective homomorphism, is φ valid in (W', R')? If yes, provide a proof, if not give a counter-example.
- (2) (20pt)
 - (a) Show, using the Sahlqvist algorithm, that the first-order correspondent of the formula

$$\Diamond \Box p \to \Diamond p$$

is the formula

$$\forall x \forall y (Rxy \to \exists z (Rxz \land Ryz)).$$

(b) Show that the modal logic

$$\mathbf{KO} = \mathbf{K} + (\Diamond \Box p \to \Diamond p)$$

is canonical. That is, given **KO**-MCSs Γ, Δ with $R^{\mathbf{KO}}(\Gamma, \Delta)$, you will need to find a **KO**-MCS Θ with $R^{\mathbf{KO}}(\Gamma, \Theta)$ and $R^{\mathbf{KO}}(\Delta, \Theta)$.

(Hint: You should find Lindenbaum's lemma useful.)

(c) Deduce that **KO** is sound and complete with respect to **KO**-frames.

You are not allowed to use the Sahlqvist completeness theorem.

- (3) (20pt)
 - (a) Show, using filtration, that **KO** (see Exercise 2) has the finite model property.
 - (b) Deduce that **KO** is decidable.

You can assume the facts stated in Exercise 2.

(4) (20pt)

- (a) Define regular frames for **PDL**.
- (b) Let $(\omega *)$ be the following rule:

If $\vdash \varphi \to [\pi]^n \psi$ for each $n \in \mathbb{N}$, then $\vdash \varphi \to [\pi^*] \psi$.

Recall that $[\pi]^0 p = p$ and $[\pi]^{n+1} = [\pi][\pi]^n p$.

We say that (ω^{-*}) is valid on a frame (W, R_{π}, R_{π^*}) if for any valuation V

 $(W, R_{\pi}, R_{\pi^*}, V) \Vdash \varphi \to [\pi]^n \psi \text{ for each } n \in \mathbb{N} \text{ implies} \\ (W, R_{\pi}, R_{\pi^*}, V) \Vdash \varphi \to [\pi^*] \psi.$

Let (W, R_{π}, R_{π^*}) be a (not necessarily regular) frame. Show that we have $R_{\pi^*} \subseteq (R_{\pi})^*$ iff (ω^{-*}) is valid on (W, R_{π}, R_{π^*}) .

(5) (20pt) Consider the Kripke frame (W, R), where

 $W = \{u, v, w\} \cup \{v_n, w_n : n \in \mathbb{N}\}$

and R is defined as follows:

Ruv, Ruw, Rvv_n and Rww_n (for all $n \in \mathbb{N}$);

see the figure below. Let A be the collection of all finite and co-finite subsets of W. Then (W, R, A) is a general frame. Show that

(a) $(W, R), u \not\models \Diamond \Box p \to \Box \Diamond p$,

(b) $(W, R, A), u \Vdash \Diamond \Box p \to \Box \Diamond p$.

FINAL EXAM