INTRODUCTION TO MODAL LOGIC 2017

HOMEWORK 2

- Deadline: 5 October at the **beginning** of class.
- Grading is from 0 to 100 points.
- Success!

Exercise 1. (30 points) Show that the following frame properties are not modally definable by a single formula in the basic modal language (i.e., that there is no basic modal formula ϕ such that a frame \mathbb{F} has the given property iff $\mathbb{F} \Vdash \phi$):

- (a) every point has at least two successors;
- (b) every point lies on a cycle (i.e., from every node s there is a path of non-zero length from s to itself).

Exercise 2. (30 points) Let \mathbb{M} and \mathbb{M}' be image-finite Kripke models, and consider states s and s' in \mathbb{M} and \mathbb{M}' , respectively. Assume that $\mathbb{M}, s \simeq n$ \mathbb{M}', s' , for all natural numbers n.

- (a) Prove that $\mathbb{M}, s \leftrightarrow \mathbb{M}', s'$.
- (b) Prove that $\mathbb{M}, s \leftrightarrow \mathbb{M}', s'$ without using results from [BdRV].

Exercise 3. (40 points) In this exercise we consider a bimodal language with two diamonds, \Diamond and $\langle * \rangle$. We call a frame $\mathbb{F} = (W, R_{\Diamond}, R_{\langle * \rangle})$ for this language regular if $R_{\langle * \rangle}$ is the reflexive-transitive closure of R_{\Diamond} : $R_{\langle * \rangle} = (R_{\Diamond})^*$.

Verify that the formula $\langle * \rangle \phi \leftrightarrow (\phi \lor \Diamond \langle * \rangle \phi)$ is valid in every regular frame (but you do not need to hand in your proof).

Now let Σ be a set of formulas which is closed under taking subformulas, and in addition satisfies $\langle * \rangle \phi \in \Sigma \Rightarrow \Diamond \langle * \rangle \phi \in \Sigma$.

(a) Fix a regular frame $\mathbb{F} = (W, R_{\Diamond}, R_{\langle * \rangle})$ and assume that the relation $R^s \subseteq W_{\Sigma} \times W_{\Sigma}$ is the *smallest* filtration of R_{\Diamond} , that is:

 $R^s \overline{u} \overline{v}$ iff there are $u' \in \overline{u}, v' \in \overline{v}$ with $R_{\Diamond} u' v'$.

Prove that the relation $(R^s)^*$ satisfies the filtration conditions for R^* and $\langle * \rangle$:

 (S^*) if R^*uv then $(R^s)^*\overline{u}\overline{v}$;

 (L^*) if $(R^s)^*\overline{u}\,\overline{v}$ then, for all $\langle * \rangle \phi \in \Sigma$: $\mathbb{M}, v \Vdash \phi \Rightarrow \mathbb{M}, u \Vdash \langle * \rangle \phi$.

(b) Show that a formula in this language is satisfiable in a regular model if and only if is satisfiable in a finite regular model.