INTRODUCTION TO MODAL LOGIC. MIDTERM EXAM

24 OCTOBER 2017 UNIVERSITY OF AMSTERDAM

Name:

UvA Student ID:

General comments.

- 1. The time for this exam is 3 hours (180 minutes).
- 2. There are 100 points in the exam.
- 3. Make sure that you have your name and student ID on each of the sheets you are handing in.
- 4. If you have any questions, please indicate this silently and someone will come to you. Answers to questions that are relevant for everyone will be announced publicly.
- 5. No talking during the exam.
- 6. Cell phones must be switched off and stowed.

	Maximal Points	Your points
Exercise 1	20	
Exercise 2	20	
Exercise 3	20	
Exercise 4	20	
Exercise 5	20	
Total	100	

- (1) (20pt) Consider the basic modal language. Show that the following properties on frames are not modally definable.
 - (a) The frame has more than 20 elements.
 - (b) The frame has less than 20 elements.
- (2) (20pt)
 - (a) Show that any filtration of a model M satisfying

 $\forall x \exists y (Rxy \land Ryy)$

is again a model satisfying this property.

(b) Show that not every filtration of a model M satisfying

 $\forall x \forall y \forall z ((Rxy \land Rxz) \to (y = z))$

is a model satisfying this property.

Justify your solution.

(3) (20pt) Let \Box_1 and \Box_2 be the modalities with the following semantics

 $\mathbb{M}, w \models \Box_1 \varphi \text{ iff } \forall v \in W(\mathbb{M}, v \models \varphi \iff wRv), \\ \mathbb{M}, w \models \Box_2 \varphi \text{ iff } \forall v \in W(\neg(wRv) \implies \mathbb{M}, v \models \varphi).$

- (a) Show that \Box_1 is not expressible in the language of basic modal logic. (Hint: consider disjoint union of appropriate models.)
- (b) Show that the modality \Box_1 is expressible in terms of \Box_2 and \Box of the basic modal logic, i.e., show that the formula $\Box_1 \varphi$ is equivalent on models to a formula containing only the modalities \Box_2 and \Box .
- (4) (20pt) Use the Sahlqvist algorithm to compute the first-order correspondents of the formulas:
 - (a) $\Diamond p \to \Box p$,
 - (b) $\Diamond \Box p \to \Box \Diamond p$.
- (5) (20pt) Show that, in general, first-order formulas are not preserved under ultrafilter extensions. That is, give a model \mathbb{M} , a state w and a first-order formula $\alpha(x)$ such that $\mathbb{M} \models \alpha(x)[w]$, but $\mathbb{M}^* \not\models \alpha(x)[\pi_w]$, where π_w is the principle ultrafilter generated by w.

(Hint: consider a model based on the frame $(\mathbb{N}, <)$.)