INTRODUCTION TO MODAL LOGIC 2018

HOMEWORK 1

- Deadline: September 18 at the **beginning** of class.
- Grading is from 0 to 100 points.
- Good luck!

Exercise 1. (30 points) Let Z_i be a bisimulation between models \mathbb{M}_1 and \mathbb{M}_2 , for each $i \in I$. Are the following relations bisimulations between \mathbb{M}_1 and \mathbb{M}_2 :

- the union $\bigcup_{i \in I} Z_i$?
- the intersection $\bigcap_{i \in I} Z_i$?

Give a proof or a counter-example.

Exercise 2. (30 points) A flow of time is a relational structure $\mathbb{T} = (T, <)$ such that < is an unbounded strict linear order¹ on T. A flow of time is called discrete if it satisfies the formula $\forall x \exists y (x < y \land \neg \exists z (x < z \land z < y))$. In words, every point has an *immediate* successor. Now consider the temporal logic formula

$$\delta := (q \wedge \Box_P q) \to \Diamond_F \Box_P q.$$

Show that for any flow of time $\mathbb{T} = (T, <)$, seen as a bidirectional frame for the temporal language, it holds that \mathbb{T} is discrete iff $\mathbb{T} \Vdash \delta$.

Exercise 3. (40 points) Given a finite set Φ of basic modal logic formulas, we define the formula

$$\nabla \Phi := \bigwedge \Diamond \Phi \land \Box \bigvee \Phi,$$

where $\Diamond \Phi$ denotes the set { $\Diamond \phi \mid \phi \in \Phi$ }, and we understand that $\bigwedge \emptyset = \top$ and $\bigvee \emptyset = \bot$. Then we have, for any Kripke model M and any state s in M, that $\nabla \Phi$ holds at s iff every formula $\phi \in \Phi$ holds at some successor of s, and, conversely, every successor of s satisfies one of the formulas in Φ .

- (a) Show that, for any finite set Φ , we have that $\nabla \Phi$ is satisfiable iff every member of Φ is satisfiable.
- (b)* Give an example of two formulas ϕ_0 and ϕ_1 such that
 - (1) both ϕ_0 and ϕ_1 are satisfiable in some reflexive frame, while
 - (2) $\nabla{\{\phi_0, \phi_1\}}$ is not satisfiable in any reflexive frame.

¹That is, < is irreflexive $(\forall x \neg x < x)$, transitive $(\forall xyz (x < y < z \rightarrow x < z))$, total $(\forall xy (x < y \lor x = y \lor y < x))$, and unbounded $(\forall x \exists y x < y \text{ and } \forall x \exists y y < x)$.