INTRODUCTION TO MODAL LOGIC 2017 HOMEWORK 3

- Deadline: October 16 at the **beginning** of class.
- Please staple and hand in your homework. Submit electronically only (!) in case of emergency.
- Grading is from 0 to 100 points.
- Good luck!
- (1) (30pt) (From 2017 Final Exam) Let $\mathbb{F} = (W, R)$ be a Kripke frame. The frame $\mathbb{F}^r = (W, \overline{R})$ is called the *reflexivization of* \mathbb{F} if $\overline{R} = R \cup \{(x, x) \mid x \in W\}$.

For each modal formula φ let φ^+ be the formula obtained from φ by replacing each subformula of the form $\Diamond \psi$ with $\Diamond \psi \lor \psi$ (we assume that \bot, \lor, \neg and \Diamond are the primitive symbols of the language). More precisely, φ^+ is defined inductively as follows:

- $(\perp)^+ = \perp;$
- $(p)^+ = p$, where p is a propositional letter;
- $(\varphi \lor \psi)^+ = \varphi^+ \lor \psi^+;$
- $(\neg \varphi)^+ = \neg (\varphi^+);$
- $(\Diamond \varphi)^+ = \Diamond (\varphi^+) \lor \varphi^+.$

Show that for each frame $\mathbb{F} = (W, R)$ and each modal formula φ :

$$\mathbb{F} \Vdash \varphi^+ \text{ iff } \mathbb{F}^r \Vdash \varphi.$$

(2) (30pt) Suppose that $\gamma(x), \delta(x)$ are first-order formulas. We say that $\gamma(x)$ semantically entails $\delta(x)$ (Notation: $\gamma(x) \models \delta(x)$) provided that for any model $\mathbb{M} = (W, R, V)$ and any $w \in W$,

$$\mathbb{M} \models \gamma(x)[w] \text{ implies } \mathbb{M} \models \delta(x)[w].$$

We say that $\gamma(x)$ entails $\delta(x)$ along bisimulation provided that for any models $\mathbb{M} = (W, R, V)$ and $\mathbb{M}' = (W', R', V')$, and any $w \in W, w' \in W'$,

 $(\mathbb{M}, w \cong \mathbb{M}', w' \text{ and } \mathbb{M} \models \gamma(x)[w]) \text{ implies } \mathbb{M}' \models \delta(x)[w'].$ A modal formula φ is called a *modal interpolant* of $(\gamma(x), \delta(x))$ provided that

$$\gamma(x) \models \mathsf{ST}_x(\varphi) \text{ and } \mathsf{ST}_x(\varphi) \models \delta(x).$$

In the following let $\alpha(x)$ and $\beta(x)$ be first-order formulas.

(a) Show that if $\alpha(x)$ entails $\beta(x)$ along bisimulation, then $\alpha(x) \models \beta(x)$.

- (b) Suppose that the pair $(\alpha(x), \beta(x))$ has a modal interpolant. Show that $\alpha(x)$ entails $\beta(x)$ along bisimulation.
- (c) In fact, the converse of (b) is true (but non-trivial to show), i.e. if $\alpha(x)$ entails $\beta(x)$ along bisimulation then the pair ($\alpha(x), \beta(x)$) has a modal interpolant. Show that this implies (the non-obvious direction of) the van Benthem Characterization Theorem.
- (3) (40pt) Show that Grzegorczyk's formula

 $\Box(\Box(p\to\Box p)\to p)\to p$

defines the class of frames $\mathbb{F} = (W, R)$ satisfying (i) R is reflexive, (ii) R is transitive and (iii) there are no infinite paths $x_0 R x_1 R x_2 R \dots$ such that for all i we have $x_i \neq x_{i+1}$.