INTRODUCTION TO MODAL LOGIC 2018 HOMEWORK 6

- Deadline: December 11 at the **beginning** of class.
- Grading is from 0 to 100 points.
- Please staple and hand in your homework. Submit electronically only (!) in case of emergency.
- Good luck!
- (1) (50pt) (Exercise 4.4.2 in BdRV). Let $\mathbf{KvB} := \mathbf{K} + \mathbf{vB}$, where vB is the axiom

$$\Box \Diamond \top \to \Box (\Box (\Box p \to p) \to p).$$

Let $\mathfrak{J} = (J, R, A)$ be the general frame defined as follows. The domain J of \mathfrak{J} is $\mathbb{N} \cup \{\omega, \omega + 1\}$, i.e., the set of natural numbers together with two further points ω and $\omega + 1$, and

 $R := \{ (\omega + 1, \omega), (\omega, \omega), (\omega, n) : n \in \mathbb{N} \} \cup \{ (n, m) : m < n \},\$

see the figure below. The collection of admissible sets A consists of the subsets of J such that X is finite and $\omega \notin X$ or X is cofinite and $\omega \in X$.

- (a) Show that \mathfrak{J} is indeed a general frame;
- (b) Show that $\mathfrak{J} \Vdash vB$;
- (c) Show that the formula $\Box \Diamond \top \rightarrow \Box \bot$ is valid on any Kripke frame which validates the axiom vB. (A bit tricky!);
- (d) Show that $\mathfrak{J} \not\Vdash \Box \Diamond \top \to \Box \bot$;
- (e) Conclude that **KvB** is a Kripke incomplete (consistent) normal modal logic.

- (2) (30pt)
 - (a) Let Σ be a set of formulas and A any element of $At(\Sigma)$. Show that for all $\langle \pi^* \rangle \varphi \in \neg FL(\Sigma)$: $\langle \pi^* \rangle \varphi \in A$ iff $(\varphi \in A \text{ or } \langle \pi^* \rangle \varphi \in A)$.
 - (b) Show that if $[\pi^*](p \to [\pi]p) \to (p \to [\pi^*]p)$ is valid on a frame (W, R_π, R_{π^*}) , then $R_{\pi^*} \subseteq (R_\pi)^*$
- (3) (20pt) Which classes of neighborhood frames do the following modal formulas define?
 - (a) $\neg \Box \bot$,
 - (b) $\Box p \to p$,
 - (c) $\Box p \lor \Box \neg p$,
 - (d) $\Box \Box p \to \Box p$.

Justify your solution with proof.