EXERCISE CLASS 22-11-2018: PDL

- (1) Let $\mathbb{F} = (W, \{R_{\pi}\}_{\pi \in \Pi})$ be a frame. Show that for each $\pi, \pi_1, \pi_2 \in \Pi$ we have
 - (a) $\mathbb{F} \Vdash \langle \pi_1; \pi_2 \rangle p \leftrightarrow \langle \pi_1 \rangle \langle \pi_2 \rangle p$ iff $R_{\pi_1;\pi_2} = R_{\pi_1} \circ R_{\pi_2}$,¹
 - (b) $\mathbb{F} \Vdash \langle \pi_1 \cup \pi_2 \rangle p \leftrightarrow \langle \pi_1 \rangle p \lor \langle \pi_2 \rangle p$ iff $R_{\pi_1 \cup \pi_2} = R_{\pi_1} \cup R_{\pi_2}$,
 - (c) If $(R_{\pi})^* = R_{\pi^*}$ then,

$$\mathbb{F} \Vdash \langle \pi^* \rangle p \leftrightarrow p \lor \langle \pi \rangle \langle \pi^* \rangle p \text{ and} \\ \mathbb{F} \Vdash [\pi^*](p \to [\pi]p) \to (p \to [\pi^*]p),$$

- (d) If $\mathbb{F} \Vdash p \lor \langle \pi \rangle \langle \pi^* \rangle p \to \langle \pi^* \rangle p$, then $(R_\pi)^* \subseteq R_{\pi^*}$.
- (2) Let \mathcal{M} be the set of all **PDL**-MCSs, and Σ a set of formulas in the language of **PDL**. Show that:
 - (a) $At(\Sigma) = \{\Gamma \cap \neg FL(\Sigma) \mid \Gamma \in \mathcal{M}\},\$
 - (b) If $X \subseteq \neg FL(\Sigma)$ and X is **PDL**-consistent, then there exists $A \in At(\Sigma)$ such that $X \subseteq A$.
- (3) Consider a set of **PDL** formulas Σ and let $A \in At(\Sigma)$ be an atom over Σ . Show that:
 - (a) For every $\varphi \in \neg FL(\Sigma)$, exactly one of φ and $\sim \varphi$ is in A,
 - (b) For every $\varphi \lor \psi \in \neg \operatorname{FL}(\Sigma)$, $\varphi \lor \psi \in A$ iff $\varphi \in A$ or $\psi \in A$,
 - (c) For every $\langle \pi_1; \pi_2 \rangle \varphi \in \neg FL(\Sigma), \ \langle \pi_1; \pi_2 \rangle \varphi \in A$ iff $\langle \pi_1 \rangle \langle \pi_2 \rangle \varphi \in A$,
 - (d) For every $\langle \pi_1 \cup \pi_2 \rangle \varphi \in \neg FL(\Sigma)$, $\langle \pi_1 \cup \pi_2 \rangle \varphi \in A$ iff $\langle \pi_1 \rangle \varphi$ or $\langle \pi_2 \rangle \varphi \in A$.
- (4) (From 2017 Final Exam) For a program π and a natural number k we let

$$\langle \pi \rangle^0 p = p, \quad \langle \pi \rangle^1 p = \langle \pi \rangle p, \quad \langle \pi \rangle^{k+1} p = \langle \pi \rangle \langle \pi \rangle^k p.$$

For each $n \ge 0$ we define a normal extension **PDL**ⁿ of **PDL** as follows. **PDL**ⁿ is the least normal extension of **PDL** that contains all the instances of the formula:

$$\langle \pi^* \rangle p \leftrightarrow \bigvee_{i=0}^n \langle \pi \rangle^i p.$$

(a) Show that the logic **PDL**^{*n*} is sound with respect to regular frames $(W, \{R_{\pi}\}_{\pi \in \Pi})$ such that $R_{\pi^*} = \bigcup_{k=0}^n R_{\pi}^k$, where

$$R^0_{\pi} := \{ (w, w) \mid w \in W \}, \quad R^1_{\pi} := R_{\pi}, \text{ and } R^{k+1}_{\pi} := R_{\pi} \circ R^k_{\pi}$$

(b) Show that $\mathbf{PDL} = \bigcap_{n>0} \mathbf{PDL}^n$.

¹In BdRV $R_{\pi_1} \circ R_{\pi_2}$ is also denoted $R_{\pi_1}; R_{\pi_2}$.

(Hint: For the right to left inclusion use the fact that **PDL** has the finite model property.)

(5) Explain why all the axioms of **PDL**, in the standard axiomatisation, with the exception of Segerberg's induction axiom,

$$[\pi^*](p \to [\pi]p) \to (p \to [\pi^*]p)$$

are canonical.

ADDITIONAL EXERCISES

- (6) Is **PDL** a decidable logic?
- (7) (*) Let φ be a formula in the language of **PDL** and let $\Sigma = \{\varphi\}$. Show that $\neg FL(\Sigma)$ is finite. *Hint: This is not so easy.*