EXERCISE CLASS 29-11-2018: PDL

- (1) Consider a set of **PDL** formulas Σ and let $A \in At(\Sigma)$ be an atom over Σ . Show that:
 - (a) For every $\varphi \in \neg FL(\Sigma)$, exactly one of φ and $\sim \varphi$ is in A,
 - (b) For every $\varphi \lor \psi \in \neg \operatorname{FL}(\Sigma), \ \varphi \lor \psi \in A \text{ iff } \varphi \in A \text{ or } \psi \in A,$
 - (c) For every $\langle \pi_1; \pi_2 \rangle \varphi \in \neg \operatorname{FL}(\Sigma), \ \langle \pi_1; \pi_2 \rangle \varphi \in A \text{ iff } \langle \pi_1 \rangle \langle \pi_2 \rangle \varphi \in A,$
 - (d) For every $\langle \pi_1 \cup \pi_2 \rangle \varphi \in \neg FL(\Sigma)$, $\langle \pi_1 \cup \pi_2 \rangle \varphi \in A$ iff $\langle \pi_1 \rangle \varphi$ or $\langle \pi_2 \rangle \varphi \in A$.
- (2) (From 2017 Final Exam) For a program π and a natural number k we let

$$\langle \pi \rangle^0 p = p, \quad \langle \pi \rangle^1 p = \langle \pi \rangle p, \quad \langle \pi \rangle^{k+1} p = \langle \pi \rangle \langle \pi \rangle^k p.$$

For each $n \ge 0$ we define a normal extension \mathbf{PDL}^n of \mathbf{PDL} as follows. \mathbf{PDL}^n is the least normal extension of \mathbf{PDL} that contains all the instances of the formula:

$$\langle \pi^* \rangle p \leftrightarrow \bigvee_{i=0}^n \langle \pi \rangle^i p.$$

(a) Show that the logic **PDL**ⁿ is sound with respect to regular frames $(W, \{R_{\pi}\}_{\pi \in \Pi})$ such that $R_{\pi^*} = \bigcup_{k=0}^n R_{\pi}^k$, where

$$R^0_{\pi} := \{ (w, w) \mid w \in W \}, \quad R^1_{\pi} := R_{\pi}, \text{ and } R^{k+1}_{\pi} := R_{\pi} \circ R^k_{\pi}.$$

(b) Show that $\mathbf{PDL} = \bigcap_{n \ge 0} \mathbf{PDL}^n$.

(Hint: For the right to left inclusion use the fact that **PDL** has the finite model property.)

(3) (From 2016 Final Exam) Let (ω^{-*}) be the following rule:

If $\vdash \varphi \to [\pi]^n \psi$ for each $n \in \mathbb{N}$, then $\vdash \varphi \to [\pi^*] \psi$.

Recall that $[\pi]^0 p = p$ and $[\pi]^{n+1} = [\pi][\pi]^n p$.

We say that $(\omega - *)$ is valid on a frame (W, R_{π}, R_{π^*}) if for any valuation V

$$(W, R_{\pi}, R_{\pi^*}, V) \Vdash \varphi \to [\pi]^n \psi$$
 for each $n \in \mathbb{N}$ implies $(W, R_{\pi}, R_{\pi^*}, V) \Vdash \varphi \to [\pi^*] \psi$.

Let (W, R_{π}, R_{π^*}) be a (not necessarily regular) frame. Show that we have $R_{\pi^*} \subseteq (R_{\pi})^*$ iff (ω^{-*}) is valid on (W, R_{π}, R_{π^*}) .

(4) Explain why all the axioms of **PDL**, in the standard axiomatisation, with the exception of Segerberg's induction axiom,

$$[\pi^*](p \to [\pi]p) \to (p \to [\pi^*]p)$$

are canonical.

(5) Show that the finite models from [Def. 4.84, BdRV] used in the **PDL** completeness proof can be obtain (up to isomorphism) via certain filtrations of the canonical model for **PDL**.

ADDITIONAL EXERCISES

- (6) Is **PDL** a decidable logic?
- (7) (*) Let Σ be a non-empty finite set of **PDL**-formulas. Show that $\vdash_{\mathbf{PDL}} \bigvee_{A \in At(\Sigma)} \widehat{A}$.
- (8) (**) Let φ be a formula in the language of **PDL** and let $\Sigma = \{\varphi\}$. Show that $\neg FL(\Sigma)$ is finite. *Hint: This is not so easy.*