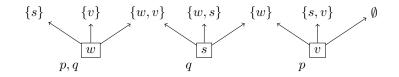
EXERCISE CLASS 6-12-2018: NEIGHBORHOOD SEMANTICS

- (1) ($\Diamond \Box$ modality) Prove that
 - (a) $\vdash_{\mathbf{S4}} \Diamond \Box(p \land q) \rightarrow (\Diamond \Box p \land \Diamond \Box q),$
 - (b) $\forall_{\mathbf{S4}} (\Diamond \Box p \land \Diamond \Box q) \rightarrow \Diamond \Box (p \land q),$
 - (c) $\vdash_{\mathbf{S4.2}} (\Diamond \Box p \land \Diamond \Box q) \rightarrow \Diamond \Box (p \land q).$
- (2) Consider the NBD-model¹ $\mathbb{M} = (W, N, V)$ here defined.

$$\begin{split} W &= \{w, s, v\} \qquad V(p) = \{w, s\} \qquad V(q) = \{s, v\} \\ N(w) &= \left\{ \ \{s\}, \{v\}, \{w, v\} \ \right\} \qquad N(s) = \left\{ \ \{w, v\}, \{w, s\}, \{w\} \ \right\} \qquad N(v) = \left\{ \ \{w\}, \{s, v\}, \emptyset \ \right\} \end{split}$$



Compute the set of states that satisfy:

- (a) $\Box \bot$,
- (b) $\Box p$,
- (c) $\Diamond p$,
- (d) $\Box \Diamond p$,
- (e) $\Box \Box p$.
- (3) (Logic of an NBD-frame) Given an NBD-frame \mathbb{F} , define $\text{Log}(\mathbb{F}) = \{\varphi \mid \mathbb{F} \Vdash \varphi\}$. We say that a formula φ is *valid* on \mathbb{F} if $\varphi \in \text{Log}(\mathbb{F})$.
 - (a) Show that $Log(\mathbb{F})$ contains the **Dual** axiom and it is closed under MP, US and RE.

$$\operatorname{RE} \frac{p \leftrightarrow q}{\Box p \leftrightarrow \Box q}$$

- (b) Show that the (**K**) axiom is not valid on every NBD-frame.
- (c) Show that $Log(\mathbb{F})$ is not closed under Necessitation in general.
- (d) Show that if \mathbb{F} is monotone², then the axiom

$$(\mathbf{M}) \ \Box(p \land q) \to (\Box p \land \Box q)$$

is valid on \mathbb{F} . Is (**M**) valid on an arbitrary neighbourhood frame?

- (4) What class of NBD-frames do the following formulas define?
 - (a) $\Box \top$,
 - (b) $\Box p \land \Box q \to \Box (p \land q)$,
 - (c) $\Box(p \land q) \to \Box p \land \Box q$,
 - (d) $\Box(p \to q) \to (\Box p \to \Box q)$.

²An NBD-frame is called *monotone* if N(w) is upwards closed for every $w \in W$, i.e., $U \in N(w)$ and $U \subseteq V$ entails $V \in N(w)$.

 $^{^1\}mathrm{NBD}\textsc{-model}$ and NBD-frame stand for neighborhood model and neighborhood frame respectively.

- (5) Call an NBD-model $\mathbb{M} = (W, N, V)$ an *augmented NBD-model* if the neighborhood of each point is a complete filter, i.e., N(w) is a non-empty, upwards closed set which is closed under arbitrary intersections, for every $w \in W$.
 - (a) Let $\mathcal{M} = (W, R, V)$ be a Kripke model. Define an NBD-model $\mathbb{M} = (W, N, V)$ such that for each $w \in W$ and each modal formula φ we have

$$\mathcal{M}, w \Vdash \varphi \iff \mathbb{M}, w \Vdash \varphi \qquad (*)$$

- (b) Let $\mathbb{M} = (W, N, V)$ be an augmented NBD-model. Define a Kripke model $\mathcal{M} = (W, R, V)$ such that for each $w \in W$ and each modal formula φ , (*) holds.
- (c) Is it possible to find \mathcal{M} as in point 5b for an arbitrary \mathbb{M} ?
- (6) Define $\mathbf{E} \oplus \gamma$ as the smallest set of formulas containing \mathbf{E} , γ and closed under MP and US. Prove that
 - (a) $\mathbf{EM} = \mathbf{E} \oplus (\Box(p \land q) \to \Box p \land \Box q)$ is the smallest minimal modal logic containing \mathbf{E} and closed under the rule RM.

$$\operatorname{RM} \frac{p \to q}{\Box p \to \Box q}$$

- (b) $\mathbf{EN} = \mathbf{E} \oplus (\Box \top)$ is the smallest minimal modal logic containing \mathbf{E} and closed under Necessitation.
- (7) Define the modality $\langle]$ as follows,

$$\mathbb{M}, w \Vdash \langle] \varphi \iff \exists X \in N(w), \ X \subseteq \llbracket \varphi \rrbracket_{\mathbb{M}}$$

Prove that $\langle \ |$ validates the axiom (**M**) and that $\langle \ |$ and \Box coincide on monotone NBD-frames.