EXERCISE CLASS 12-12-2018: NEIGHBORHOOD SEMANTICS

- (1) Call an NBD-model $\mathbb{M} = (W, N, V)$ an *augmented NBD-model* if the neighborhood of each point is a complete filter, i.e., N(w) is a non-empty, upwards closed set which is closed under arbitrary intersections, for every $w \in W$.
 - (a) Let $\mathcal{M} = (W, R, V)$ be a Kripke model. Define an NBD-model $\mathbb{M} = (W, N, V)$ such that for each $w \in W$ and each modal formula φ we have

$$\mathcal{M}, w \Vdash \varphi \iff \mathbb{M}, w \Vdash \varphi \qquad (*)$$

- (b) Let $\mathbb{M} = (W, N, V)$ be an augmented NBD-model. Define a Kripke model $\mathcal{M} = (W, R, V)$ such that for each $w \in W$ and each modal formula φ , (*) holds.
- (c) Is it possible to find \mathcal{M} as in point 1b for an arbitrary \mathbb{M} ?
- (2) Define $\mathbf{E} \oplus \gamma$ as the smallest set of formulas containing \mathbf{E} , γ and closed under MP and US. Prove that
 - (a) $\mathbf{EM} = \mathbf{E} \oplus (\Box(p \land q) \to \Box p \land \Box q)$ is the smallest minimal modal logic containing \mathbf{E} and closed under the rule RM

$$\operatorname{RM} \frac{p \to q}{\Box p \to \Box q}$$

- (b) $\mathbf{EN} = \mathbf{E} \oplus (\Box \top)$ is the smallest minimal modal logic containing \mathbf{E} and closed under Necessitation.
- (c) **EMCN** = **E** \oplus ($\Box(p \land q) \rightarrow \Box p \land \Box q$) \oplus ($\Box p \land \Box q \rightarrow \Box(p \land q)$) \oplus ($\Box \top$) is the in fact the modal logic **K**.
- (3) Define the modality $\langle]$ as follows,

$$\mathbb{M}, w \Vdash \langle] \varphi \iff \exists X \in N(w), \ X \subseteq \llbracket \varphi \rrbracket_{\mathbb{M}}$$

Prove that $\langle \]$ validates the axiom (**M**) and that $\langle \]$ and \Box coincide on monotone NBD-frames.

(4) Let **L** be a modal logic. Given a formula in the language of basic modal logic φ define

$$|\varphi|_{\mathbf{L}} \coloneqq \{\Gamma \in M_{\mathbf{L}} \colon \varphi \in \Gamma\},\$$

where $M_{\mathbf{L}}$ is the set of maximal **L**-consistent sets. Show that for formulas φ and ψ ,

$$|\varphi|_{\mathbf{L}} \subseteq |\psi|_{\mathbf{L}} \iff \vdash_{\mathbf{L}} \varphi \to \psi.$$

(5) Show that

- (a) The logic **EC** is sound and complete with respect to the class of neighborhood frames that are closed under intersections;
- (b) The logic **EN** is sound and complete with respect to the class of neighborhood frames that contains the unit;
- (c) (*) The logic **EM** is sound and complete with respect to the class of monotone neighborhood frames;

(d) The logic \mathbf{K} is sound and complete with respect to the class of (augmented) filter models.

Hint: For item (c) consider the canonical model $\mathcal{M}_{\mathbf{EM}} = (W_{\mathbf{EM}}, N_{\mathbf{EM}}, V_{\mathbf{EM}})$ for **EM** and for each $w \in W$, consider the new neighborhood function

$$N_{\mathbf{EM}}^{\min}(w) \coloneqq \{ X \in \wp(W_{\mathbf{EM}}) \colon \exists Y \in N_{\mathbf{EM}}^{\min}(w) \ (Y \subseteq X) \}.$$