Introduction to Modal Logic. Exercise class 3

20 September 2018

Exercise 1. Which of the following frame properties are preserved (reflected) by the operations of forming generated subframes, p-morphic images, disjoint unions?

- (1) reflexivity;
- (2) transitivity;
- (3) irreflexivity;
- (4) converse seriality $(\forall x \exists y Ryx)$;
- (5) having cardinality at least n, for some natural number n;
- (6) having cardinality at most n, for some natural number n.

Exercise 2. Show that the following frame properties cannot be defined in the basic modal language:

- (1) converse seriality;
- (2) having cardinality at least n, for some natural number n;
- (3) having cardinality at most n, for some natural number n;
- (4) acyclicity: 'there is no finite path (of non-zero length) from any point to itself'.

Exercise 3. Let $\mathbb{M} = (W, R, V)$ be a model and Σ a set of formulas closed under subformulas. Show that the filtrations $\mathbb{M}^s = (W_{\Sigma}, R^s, V^f)$ and $\mathbb{M}^l = (W_{\Sigma}, R^l, V^f)$ are indeed the smallest and the largest filtrations, respectively.¹

Exercise 4. Compute both the largest and the smallest filtration of the model below through each of the following sets

 $\Sigma_1 \coloneqq \{p, q\} \quad \Sigma_2 \coloneqq \{p, q, \diamondsuit p\} \quad \Sigma_3 \coloneqq \{q\}.$

¹At the lecture W_{Σ} was denoted by W^f .

Exercise 5. Which of the following properties of frames are preserved by taking suitable filtrations of Kripke models?

- (1) reflexivity
- (2) symmetry
- (3) seriality
- (4) directedness: $\forall x_0 x_1 x_2 ((Rx_0 x_1 \land Rx_0 x_2) \rightarrow \exists y (Rx_1 y \land Rx_2 y))$
- (5) density: $\forall x_1 x_2 (x_1 R x_2 \rightarrow \exists y (R x_1 y \land R y x_2))$
- (6) every world sees a reflexive world: $\forall x \exists y (Rxy \land Rxy)$

Exercise 6. (*) Let $\mathbb{M} = (W, R, V)$ be a model with R a transitive relation and Σ a subformula closed set. Let $(R^s)^*$ be the transitive closure of smallest filtration relation R^s . Show that $(W_{\Sigma}, (R^s)^*, V^f)$ is a transitive filtration of \mathbb{M} .