Introduction to Modal Logic. Exercise class 4

27 September 2018

Exercise 1. Compute the standard translations of the following formulas:

- (1) $\Diamond p \to \Diamond \Diamond p;$
- (2) $\Diamond \Box p \lor \Box p;$
- (3) $\Box(\Box p \to q) \lor \Box(\Box q \to p);$
- (4) $(p \land \Box(\Diamond p \to \Box q)) \to \Diamond \Box \Box q;$
- (5) $\Box(\Box p \to p) \to \Box p;$
- (6) $q \to \Box_P \Diamond_F q$.

Exercise 2. Prove that the standard translation is correct, that is:

(1) For all models \mathbb{M} , all states $w \in \mathbb{M}$, and all modal formulas φ ,

 $\mathbb{M}, w \Vdash \varphi \iff \mathbb{M} \models ST_x(\varphi)[w].$

(2) For all models \mathbb{M} and all model formulas φ ,

 $\mathbb{M} \Vdash \varphi \iff \mathbb{M} \models \forall x S T_x(\varphi).$

Exercise 3. Show that Rxx is not equivalent to the standard translation of a formula in the language of basic modal logic.

Exercise 4.

- (1) Show that the mapping f defined in the proof of Proposition 2.15 (of Blackburn et al.) is indeed a surjective bounded morphism.
- (2) Show that every model is a bounded morphic image of a disjoint union of rooted models.
- (3) Deduce from (1) and (2) that every model is a bounded morphic image of a forest (a *forest* is a disjoint union of trees).

Exercise 5. For each $n \in \omega$ find a finite model $\mathbb{M}_n = (W, R, V)$ and a world $w \in W$ such that the unravelling of \mathbb{M} at w is based on a tree in which every node has exactly n immediate successors.

Exercise 6. Let (W, R) and (W', R') be Kripke frames. A map $f: W \to W'$ is called a *homomorphism* if for each $w, v \in W$ we have Rwv implies R'f(w)f(v). Is validity of modal formulas preserved under surjective homomorphisms? In other words, if a modal formula φ is valid in (W, R) and if $f: W \to W'$ is a surjective homomorphism, is φ valid in (W', R')? If yes, provide a proof, if not give a counter-example.

Exercise 7. (*) Show that if a modal formula φ is satisfiable, then it is satisfiable in a finite tree.