Introduction to Modal Logic Exercise class 5

October 4, 2018

Examples.

- In the formula $\neg p$, the proposition p appears negatively because it appears under the scope of a negation;
- In the formula $\neg\neg p$, the proposition p appears positively because it appears under the scope of an even number of negations;
- In the formula $\neg(p \lor \neg p)$, the left occurrence of proposition p appears negatively, while the right occurrence appears positively.

Exercise 1. Consider as primitive connectives \vee , \neg , \bot and \diamondsuit . Let p be a propositional letter that occurs in φ . Define by induction on φ : The occurrence of p is positive (negative).

Definition 1. A formula φ is called positive (negative) in p if all occurrences of p are positive (negative).

A formula φ is called upward monotone (respectively downward monotone) in p if for every frame \mathbb{F} , every point w and every pair of assignments V and V' such that

$$\begin{cases} V(p) \subseteq V'(p) \\ V(q) = V'(q) & \text{for } q \neq p \end{cases}$$

it holds

$$\begin{split} (\mathbb{F},V),w \Vdash \varphi \Rightarrow (\mathbb{F},V'),w \Vdash \varphi \\ \big(\text{resp. } (\mathbb{F},V'),w \Vdash \varphi \Rightarrow (\mathbb{F},V),w \Vdash \varphi \big) \end{split}$$

Exercise 2 (Blackburn et al. 3.5.3).

- Show that if φ is positive in p then it is upward monotone in p, and if it is negative in p then it is downward monotone in p.
- What about the converse? If φ upward (downward) monotone in p does it follow that φ is positive (negative) in p?

Exercise 3. Compute the first order correspondents of the following closed formulas.

(1) $\Box \bot;$

- (2) $\Box \Diamond \top \rightarrow \Diamond \Box \top$;
- $(3) \Diamond \Box \bot \rightarrow \Box \Diamond \bot;$
- $(4) \square \Diamond \top \rightarrow \square \bot;$
- $(5) \diamond_P(\diamond_F \Box_P \bot \to \Box_F \bot).$

Exercise 4. Recall that a partial order on a set W is a binary relation $R \subseteq W^2$ which is reflexive, transitive and anti-symmetric.

- (1) Are partial orders modally definable?
- (2) Are partial orders modally definable within the class of finite Kripke frames?

Exercise 5 (Blackburn et al. 3.3.3). Consider the language with three diamonds, \diamondsuit_1 , \diamondsuit_2 and \diamondsuit_3 . For each of the frame conditions on the corresponding accessibility relations below, find out whether it is modally definable or not:

- (1) R_1 is the union of R_2 and R_3 ,
- (2) R_1 is the intersection of R_2 and R_3 ,
- (3) R_1 is the complement of R_2 .

Exercise 6 (Blackburn et al. 3.2.3). Consider the basic temporal language. Recall that a frame $\mathbb{F} = (W, R_F, R_P)$ for this language is called *bidirectional* if R_P is the converse of R_F .

- (1) Show that among the finite bidirectional frames, the formula $\Box_F(\Box_F q \to q) \to \Box_F q$ together with its converse $\Box_P(\Box_P q \to q) \to \Box_P q$ defines the transitive and irreflexive frames.
- (2) Show that among the bidirectional frames that are transitive, irreflexive, and satisfy $\forall xy(R_Fxy \lor x = y \lor R_Pxy)$, these same formulas define the finite frames.
- (3) Is there a finite set of formulas in the basic modal language that has these same definability properties?