INTRODUCTION TO MODAL LOGIC EXERCISE CLASS 7: NORMAL MODAL LOGICS AND HILBERT STYLE DERIVIATIONS

18 OCTOBER, 2018

- (1) Define Sahlqvist antecedent as the one built from \bot , \top , boxed atoms and negative formulas by applying \diamond and \wedge . Simple Sahlqvist formulas¹ and Sahlqvist formulas are defined as in the notes using this new definition of a Sahlqvist antecedent.
 - (a) (3.7.4 Blackburn et al.) Suppose $\varphi \to \psi$ is a simple Sahlqvist formula in this new sense. Show that the formula $\Box(\varphi \to \psi)$ is locally equivalent (on frames) to a simple Sahlqvist formula, namely to $\diamond(\varphi \land \neg \psi) \to q$, where q does not occur in φ and ψ .
 - (b) Show that if $\varphi_1 \to \psi_1$ and $\varphi_2 \to \psi_2$ are modal formulas, then $(\varphi_1 \to \psi_1) \lor (\varphi_2 \to \psi_2)$ is locally equivalent (on frames) to the modal formula $(\varphi_1 \land \varphi_2) \to (\psi_1 \lor \psi_2)$.
 - (c) Deduce that every Sahlqvist formula in this new sense is locally equivalent to a simple Sahlqvist formula in this new sense.
- (2) Let \mathcal{C} be a class of frames and let \mathcal{M} be a class of models.
 - (a) Show that

$$\mathsf{Log}(\mathcal{C}) := \{ \varphi \colon \forall \mathbb{F} \in \mathcal{C} \ (\mathbb{F} \Vdash \varphi) \}$$

is a normal modal logic.

(b) Is the set of formulas

$$\mathsf{Th}(\mathcal{M}) := \{ arphi \colon orall \mathbb{M} \in \mathcal{M} \ (\mathbb{M} \Vdash arphi) \}$$

a normal modal logic?

- (3) Let Λ be a normal modal logic and let $\varphi, \varphi', \psi, \psi'$ and χ be formulas in the language of basic modal logic. Show that
 - (a) If $\varphi \to \psi$ is (a substitution instance of) a propositional tautology, then $\vdash_{\Lambda} \varphi$ implies $\vdash_{\Lambda} \psi$.
 - (b) If $\vdash_{\Lambda} \varphi$ and $\vdash_{\Lambda} \psi$ then $\vdash_{\Lambda} \varphi \land \psi$.
 - (c) If $\vdash_{\Lambda} \varphi \to \psi$ and $\vdash_{\Lambda} \psi \to \chi$ then $\vdash_{\Lambda} \varphi \to \chi$.
 - (d) If $\vdash_{\Lambda} \varphi \to \psi$ and $\vdash_{\Lambda} \varphi' \to \psi'$ then $\vdash_{\Lambda} (\varphi \land \varphi') \to (\psi \lor \psi')$
- (4) Let Λ be a normal modal logic and let φ and ψ be formulas in the language of basic modal logic. Prove that
 - (a) $\vdash_{\Lambda} \varphi \to \psi$ implies $\vdash_{\Lambda} \Box \varphi \to \Box \psi$,

¹This is now different from the definition of simple Sahlqvist formulas given in Blacknurn et al. 3.47.

 $\begin{array}{l} (\mathbf{b}) \vdash_{\Lambda} \varphi \to \psi \text{ implies } \vdash_{\Lambda} \Diamond \varphi \to \Diamond \psi, \\ (\mathbf{c}) \vdash_{\Lambda} \Box(\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi), \\ (\mathbf{d}) \vdash_{\Lambda} \Diamond(\varphi \lor \psi) \leftrightarrow (\Diamond \varphi \lor \Diamond \psi). \end{array}$

(5) (Equivalent replacement). Let $\varphi[\psi]$ be a formula that contains ψ as a subformula. Let $\varphi[\chi]$ denote the formula where ψ in $\varphi[\psi]$ is replaced with the formula χ . Show that

 $\vdash_{\Lambda} \psi \leftrightarrow \chi \quad \text{implies} \quad \vdash_{\Lambda} \varphi[\psi] \leftrightarrow \varphi[\chi],$

for any normal modal logic Λ .

- (6) Show that $\not\vdash_{\mathbf{S4}} p \to \Box \Diamond p$ and that $\not\vdash_{\mathbf{K}} \Box p \lor \Box \neg p$. Recall that $\mathbf{S4} = \mathbf{K} + (\Box p \to p) + (\Box p \to \Box \Box p)$.
- (7) A normal modal logic Λ is *Halldén complete* if for every pair of formulas φ and ψ with no common variables we have that

 $\vdash_{\Lambda} \varphi \lor \psi \quad \text{implies} \quad \vdash_{\Lambda} \varphi \text{ or } \vdash_{\Lambda} \psi.$

Is the normal modal logic K Halldén complete? Give proof or counter-example.