EXERCISE CLASS 1-11-2018: NORMAL MODAL LOGICS AND CANONICAL MODELS

(1) Let \mathcal{C} be a class of frames and let \mathcal{M} be a class of models.

(a) Show that

$$\mathsf{Log}(\mathcal{C}) := \{ \varphi \colon \forall \mathbb{F} \in \mathcal{C} \ (\mathbb{F} \Vdash \varphi) \}$$

is a normal modal logic. Conclude that **K** is sound w.r.t. the class of all frames. (b) Is the set of formulas

$$\mathsf{Fh}(\mathcal{M}) := \{ \varphi \colon \forall \mathbb{M} \in \mathcal{M} \ (\mathbb{M} \Vdash \varphi) \}$$

a normal modal logic?

- (2) Show that $\not\vdash_{\mathbf{S4}} p \to \Box \diamondsuit p$ and that $\not\vdash_{\mathbf{K}} \Box p \lor \Box \neg p$. Recall that $\mathbf{S4} = \mathbf{K} + (\Box p \to p) + (\Box p \to \Box \Box p)$.
- (3) A normal modal logic Λ is *Halldén complete* if for every pair of formulas φ and ψ with no common variables we have that

$$\vdash_{\Lambda} \varphi \lor \psi$$
 implies $\vdash_{\Lambda} \varphi$ or $\vdash_{\Lambda} \psi$.

Is the normal modal logic **K** Halldén complete? Give proof or counter-example.

- (4) (a) Let $\Gamma := \{p, q, p \land q, \Box p, \Box q, \Box (p \land q)\}, \Delta := \{p, \neg q, \Box p\}, \text{ and } \Delta' := \{\Box p, \Box q, \Box (p \land q)\}$ be sets of formulas.
 - (b) Are these sets maximal consistent (in some language)?
 - (c) Let the relation R' on $\{\Gamma, \Delta, \Delta'\}$ and the valuation V' on $\{\Gamma, \Delta, \Delta'\}$ be as defined on the canonical model. Draw the resulting Kripke model.
- (5) Let L be a normal modal logic and let Γ be an L-MCS. Show that
 - (i) If $\varphi \in \Gamma$ and $\varphi \to \psi \in \Gamma$ then $\psi \in \Gamma$;
 - (ii) $L \subseteq \Gamma$;
 - (iii) For every formula φ either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$;
 - (iv) For every pair of formulas φ and ψ we have that $\varphi \land \psi \in \Gamma$ iff $\varphi \in \Gamma$ and $\psi \in \Gamma$;
 - (v) For every pair of formulas φ and ψ we have that $\varphi \lor \psi \in \Gamma$ iff $\varphi \in \Gamma$ or $\psi \in \Gamma$.
- (6) Let L be a normal modal logic and define a relation R'' on the canonical model for L by

 $R''(\Gamma, \Delta)$ iff $\forall \varphi (\varphi \in \Delta \implies \Diamond \varphi \in \Gamma),$

where Γ and Δ are *L*-MCSs. Show that R'' = R', where R' is the relation

$$R'(\Gamma, \Delta)$$
 iff $\forall \varphi (\Box \varphi \in \Gamma \implies \varphi \in \Delta),$

where Γ and Δ are *L*-MCSs. Thus, for any normal modal logic *L*, we may define the canonical relation R^L as either R' or R''.

- (7) Show that in the canonical model for **K** (or any other consistent normal modal logic L) there exist (L-)MCSs Γ and Δ that are incomparable (i.e., we have neither $R^{L}(\Gamma, \Delta)$ nor $R^{L}(\Delta, \Gamma)$).
- (8) Let Γ be a set of formulas (say, in the language of basic modal logic). Prove that if Γ is satisfiable then it is consistent. Can you generalise this to cover *L*-consistency for an arbitrary normal modal logic *L*?
- (9) Let L be a consistent normal modal logic. Given a world w in an L-model M, show that the set of formulas $\{\varphi \colon \mathbb{M}, w \Vdash \varphi\}$ is an L-MCS.
- (10) (*) Show that for every MCS Γ in the canonical model for **K**, there exists a MCS Δ such that $\Delta R^{\mathbf{K}}\Gamma$.