EXERCISE CLASS 8-11-2018:
CANONICAL MODELS AND THE FINITE MODEL PROPERTY

1. More on completeness and the canonical model

(a) Show that the normal modal logic $KD := K + (\Diamond \top)$ is sound and complete with respect to the class of serial Kripke frames, i.e., Kripke frames satisfying the first-order condition $\forall x \exists y(xRy)$.

(b) Show that the normal modal logic $KT := K + (\Box p \to p)$ is sound and complete with respect to the class of reflexive Kripke frames.

(c) Show that the normal modal logic $S4 := K + (\Box p \to p) + (\Box p \to \Box \Box p)$ is sound complete with respect to the class of reflexive and transitive Kripke frames.

(d) Show that the normal modal logic $KB := K + (p \to \Box \Box p)$ is sound and complete with respect to the class of symmetric Kripke frames.

(e) (∗) Show that the normal modal logic $Den := K + (\Diamond p \to \Diamond \Diamond p)$ is sound and complete with respect to the class of dense Kripke frames, i.e., Kripke frames satisfying the first-order condition $\forall x \forall z (xRz \implies \exists y (xRy \land yRz))$. Hint: This is not so easy.1

A normal temporal logic is a normal modal logic (in the basic temporal language) containing the axioms $q \to 2F3Pq$ and $q \to 2P3Fq$. The smallest normal temporal logic is called the basic temporal logic and is denoted by Kt.

Show that the basic temporal logic Kt is sound and complete with respect to bi-directional frames.

(3) Show that if $L = Log(C)$ for some class of (finite) frames, then $L = Log(C')$ for some class of (finite) rooted frames.

2. Finite model property

(1) Show that the following normal modal logics have the finite model property

(a) The normal modal logic K;

(b) The normal modal logic $KD := K + \Diamond \top$,

(c) The normal modal logic $KT := K + p \to \Diamond p$;

(d) The normal modal logic $K4 := K + \Box \Diamond p \to \Diamond p$;

(e) The normal modal logic $S4 := KT + \Diamond \Diamond p \to \Diamond p$;

(f) (∗) The normal modal logic $S5 := S4 + p \to \Box \Diamond p$;

(g) (∗) The normal modal logic $S4.2 := S4 + \Diamond \Box p \to \Box \Diamond p$.

(2) Which of the normal modal logics above are decidable?

(3) (∗) Let, for each $n > 0$, $MT_n = \Diamond ((\Box p_1 \to p_1) \land \ldots \land (\Box p_n \to p_n))$ and define the normal modal logic $KMT := K + \{MT_n : n \in \mathbb{N}\}$.

(a) Show that KMT is sound and complete with respect to the class of Kripke frames satisfying the first-order condition $\forall x \exists y (xRy \& yRy)$. Hint: To establish completeness show that for Γ any KMT-MCS the set $\{\psi : \Box \psi \in \Gamma\} \cup \{\Box \psi \to \psi : \psi \in Fm\}$ is KMT-consistent.

1Given Den-MCSs Γ and Δ such that $\Gamma \models^\text{Den} \Delta$. You need to show that the set of formulas $\Sigma_0^\text{Den} \cup \Sigma_1^\text{Den}$ is Den-consistent, where $\Sigma_0^\text{Den} := \{\varphi : \Box \varphi \in \Gamma\}$ and $\Sigma_1^\text{Den} := \{\Diamond \psi : \psi \in \Delta\}$. To that end you might find it helpful to show that $\vdash_K \Diamond (p \land q) \to \Diamond p \land q$ and that $((p \land q) \to r) \to (p \to (q \to r))$ is a propositional tautology.
(b) Show that \mathbf{KMT} has the finite model property.

(c) Show that \mathbf{KMT} is decidable.

(d) Show that \mathbf{KMT} is not finitely axiomatizable. \textit{Hint: For each }$n > 0$\textit{ let }$F_n = (W, R)$\textit{ be a frame of size }n\textit{ with }wRv\textit{ iff }$v \neq w.$\textit{ Show that }$F_m \models \mathbf{MT}_n$\textit{ iff }$m > n + 1.$

(e) Show that $(\mathbb{N}, <)$ is a frame for the logic \mathbf{KMT}. Why is this not a contradiction?