EXERCISE CLASS 8-11-2018: CANONICAL MODELS AND THE FINITE MODEL PROPERTY

1. More on completeness and the canonical model

- (1) (a) Show that the normal modal logic $\mathbf{KD} \coloneqq \mathbf{K} + (\Diamond \top)$ is sound and complete with respect to the class of serial Kripke frames, i.e., Kripke frames satisfying the first-order condition $\forall x \exists y(xRy)$.
 - (b) Show that the normal modal logic $\mathbf{KT} \coloneqq \mathbf{K} + (\Box p \to p)$ is sound and complete with respect to the class of reflexive Kripke frames.
 - (c) Show that the normal modal logic $\mathbf{S4} \coloneqq \mathbf{K} + (\Box p \rightarrow p) + (\Box p \rightarrow \Box \Box p)$ is sound a complete with respect to the class of reflexive and transitive Kripke frames.
 - (d) Show that the normal modal logic $\mathbf{KB} \coloneqq \mathbf{K} + (p \to \Box \Diamond p)$ is sound and complete with respect to the class of symmetric Kripke frames.
 - (e) (*) Show that the normal modal logic **Den** := $\mathbf{K} + (\Diamond p \to \Diamond \Diamond p)$ is sound and complete with respect to the class of dense Kripke frames, i.e., Kripke frames satisfying the first-order condition $\forall x \forall z (xRz \implies \exists y (xRy \land yRz))$. *Hint: This is not so easy*¹.
- (2) A normal temporal logic is a normal modal logic (in the basic temporal language) containing the axioms $q \to \Box_F \diamond_P q$ and $q \to \Box_P \diamond_F q$. The smallest normal temporal logic is called the basic temporal logic and is denoted by \mathbf{K}_t .

Show that the basic temporal logic \mathbf{K}_t is sound and complete with respect to bi-directional frames.

(3) Show that if $L = Log(\mathcal{C})$ for some class of (finite) frames, then $L = Log(\mathcal{C}')$ for some class of (finite) rooted frames.

2. FINITE MODEL PROPERTY

- (1) Show that the following normal modal logics have the finite model property
 - (a) The normal modal logic \mathbf{K} ;
 - (b) The normal modal logic $\mathbf{KD} \coloneqq \mathbf{K} + \Diamond \top$,
 - (c) The normal modal logic $\mathbf{KT} \coloneqq \mathbf{K} + p \rightarrow \Diamond p$,
 - (d) The normal modal logic $\mathbf{K4} \coloneqq \mathbf{K} + \Diamond \Diamond p \to \Diamond p$,
 - (e) The normal modal logic $\mathbf{S4} \coloneqq \mathbf{KT} + \Diamond \Diamond p \to \Diamond p$,
 - (f) (*) The normal modal logic $\mathbf{S5} \coloneqq \mathbf{S4} + p \rightarrow \Box \Diamond p$,
 - (g) (*) The normal modal logic $\mathbf{S4.2} \coloneqq \mathbf{S4} + \Diamond \Box p \to \Box \Diamond p$.
- (2) Which of the normal modal logics above are decidable?
- (3) (*) Let, for each n > 0 $\mathbf{MT}_n = \Diamond((\Box p_1 \to p_1) \land \ldots \land (\Box p_n \to p_n))$ and define the normal modal logic,

$\mathbf{KMT} = \mathbf{K} + \{\mathbf{MT}_n : n \in \mathbb{N}\}.$

(a) Show that **KMT** is sound and complete with respect to the class of Kripke frames satisfying the first-order condition $\forall x \exists y (xRy \& yRy)$. *Hint: To establish completeness show that for* Γ any **KMT**-MCS the set $\{\varphi : \Box \varphi \in \Gamma\} \cup \{\Box \psi \to \psi : \psi \in Fm\}$ is **KMT**-consistent.

¹Given **Den**-MCSs Γ and Δ such that $\Gamma R^{\mathbf{Den}} \Delta$ You need to show that the set of formulas $\Sigma_0^- \cup \Sigma_1^-$ is **Den**-consistent, where $\Sigma_0^- := \{\varphi \colon \Box \varphi \in \Gamma\}$ and $\Sigma_1^- := \{\Diamond \psi \colon \psi \in \Delta\}$. To that end you might find it helpful to show that $\vdash_{\mathbf{K}} \Diamond (p \land q) \to \Diamond p \land \Diamond q$ and that $((p \land q) \to r) \to (p \to (q \to r))$ is a propositional tautology.

- (b) Show that **KMT** has the finite model property.
- (c) Show that **KMT** is decidable.
- (d) Show that **KMT** is not finitely axiomatizable. *Hint: For each* n > 0 *let* $\mathbb{F}_n = (W, R)$ *be a frame of size* n *with* wRv *iff* $v \neq w$. *Show that* $\mathbb{F}_m \Vdash \mathbf{MT}_n$ *iff* m > n + 1.
- (e) Show that $(\mathbb{N}, <)$ is a frame for the logic **KMT**. Why is this not a contradiction?