NOTES ON ALGEBRAS OF TOPOLOGY

1. Three algebras coming from topology

1.1. Interior algebras.

Definition 1.1. An S4-algebra (alternatively, a closure algebra or an interior algebra) is a pair (B, \Box) where B is a Boolean algebra and $\Box: B \to B$ a modal operator such that for each $a, b \in B$ we have

- $(1) \square 1 = 1,$
- $(2) \ \Box(a \wedge b) = \Box a \wedge \Box b,$
- $(3) \square a \leq \square \square a$,
- (4) $\Box a \leq a$.

If we let $\Diamond a = \neg \Box \neg a$, then the S4-axioms can be rewritten as:

- $(1) \ \Diamond 0 = 0,$
- (2) $\Diamond (a \vee b) = \Diamond a \vee \Diamond b$,
- $(3) \ \Diamond \Diamond a \leq \Diamond a,$
- (4) $a \leq \Diamond a$.

Given a topological space (X, τ) the algebra $(\mathcal{P}(X), \operatorname{Int})$, where $\mathcal{P}(X)$ is the powerset of X and Int the interior operator, is an S4-algebra.

Exercise 1.2. Prove the above claim.

1.2. Algebras of open and regular open sets. We also know that $(\tau, \cap, \cup, \rightarrow, \emptyset)$ is a Heyting algebra, where for $U, V \in \tau$ we have

$$U \to V = \operatorname{Int}((X \setminus U) \cup V).$$

Recall that an open set $U \in \tau$ is called regular open if $\operatorname{Int}(\operatorname{Cl}(U)) = U$, where Cl is the closure operator. Let $\operatorname{RO}(X)$ denote the set of all regular open subsets of X. Then $(\operatorname{RO}(X), \cap, \dot{\cup}, \dot{\neg}, \emptyset, X)$ is a Boolean algebra, where for $U, V \in \operatorname{RO}(X)$ we have

$$U\dot{\cup}V = \operatorname{Int}(\operatorname{Cl}((U\cup V)))$$

and

$$\dot{\neg}U = \operatorname{Int}(X \setminus U).$$

Exercise 1.3. Verify the above claim.

The above motivates the following definition.

Definition 1.4. Let A be a Heyting algebra. An element $a \in A$ is called regular if $a = \neg \neg a$. Let Rg(A) be the set of all regular elements of A.

Exercise 1.5. Show that $(Rg(A), \land, \lor, \neg, 0, 1)$ forms a Boolean algebra, where for each $a, b \in Rg(A)$ we have

$$a\dot{\lor}b = \neg\neg(a\lor b).$$

Exercise 1.6. Show that the map $\neg\neg: A \to Rg(A)$ is a Heyting algebra homomorphism.

2. Pre-orders and Alexandroff topologies

A pre-ordered set or a pre order is a set with a reflexive and transitive binary relation on it. Let (X, \leq) be a pre order. A subset $U \subseteq X$ is called an *up-set* if $x \in U$ and $x \leq y$ imply $y \in U$. Given a pre order (X, \leq) we can define a topology

$$\tau \leq \{U \subseteq X : U \text{ is an up-set}\}.$$

A topological space (X,τ) is called an Alexandroff space if τ is closed under arbitrary intersections.

Exercise 2.1. Show that $(X, \tau_{<})$ is an Alexandorff space.

Given a topological space (X, τ) define a relation \leq_{τ} on X by setting

 $x \leq_{\tau} y$ iff every open set containing x also contains y.

Exercise 2.2. Show that

- (1) $x \leq_{\tau} y \text{ iff } x \in \text{Cl}(y),$
- (2) \leq_{τ} is reflexive and transitive,
- (3) (X, \leq) is isomorphic to $(X, \leq_{\tau_{\leq}})$, (4) if (X, τ) is an Alexandroff space, then (X, τ) is homeomorphic to $(X, \tau_{\leq \tau})$.