MATHEMATICAL STRUCTURES IN LOGIC 2018 FINAL EXAM

- Deadline: April 9 at 19:00.
- The exam can be submitted electronically (in a single pdf-file!) to Saul Fernandez (saul.fdez.glez@gmail.com) and Nick Bezhanishvili (N.Bezhanishvili@uva.nl).
- Grading is from 0 to 40 points.
- Good luck!

(1) (10pt) Let $\mathbf{LC} = \mathbf{IPC} + (\varphi \to \psi) \lor (\psi \to \varphi)$.

- (a) Show that subdirectly irreducible **LC**-algebras (that is, HAs validating **LC**) are chains with a second greatest element.
- (b) Show that **LC** has the finite model property.
- (c) Characterize the lattice of subvarieties of the variety LC of all LC-algebras. (Hint: prove that every finite chain is a subalgebra of any infinite subdirectly irreducible LC-algebra.)
- (2) (10pt) Let (X, \leq) be a non-empty Priestley space.
 - (a) Show that the set of maximal points of (X, \leq) is non-empty. (Hint: use Zorn's Lemma¹ and compactness of X.)
 - (b) Let (X, \leq) be a Priestley space. Show that for each closed down-set U and $x \notin U$, there is a clopen down-set V such that $U \subseteq V$ and $x \notin V$.

Use this fact to show that for clopen up-sets U and V if the greatest clopen up-set C such that $C \cap U \subseteq V$ exists, then $C = (\downarrow (U \setminus V))^c$. (You are not allowed to use Esakia duality for Heyting algebras. You can use the fact that for each closed set $F \subseteq X$ the set $\downarrow F$ is closed, Tutorial 5(2).)

(c) Give an example of a Stone space X and a partial order \leq on X such that $\uparrow x$ is a closed set for each $x \in X$, but (X, \leq) is not a Priestley space. (Hint: it might be useful to work with the two-point compactification of \mathbb{N} . That is, consider the space $\mathbb{N} \cup \{\infty_1, \infty_2\}$, whose topology is generated by the set

$$\mathcal{S} = \{ \text{finite subsets of } \mathbb{N}, \text{ cofinite subsets of } \mathbb{N} \text{ with } \\ \{ \infty_1, \infty_2 \}, E \cup \{ \infty_1 \}, O \cup \{ \infty_2 \} \},$$

where E is the set of even numbers and O is the set of odd numbers. In other words we are taking the least topology containing S).

¹Recall that Zorn's Lemma states that if every chain in a nonempty poset has an upper bound, then the poset has a maximal element.

(3) (10pt) Let $\mathcal{B} = (B, \Box)$ be an S4-algebra. A filter $F \subseteq B$ is called a *modal filter* if for each $a \in B$ we have

$$a \in F \Rightarrow \Box a \in F.$$

- (a) Show that there is one-to-one correspondence between the congruences of \mathcal{B} and modal filters of \mathcal{B} . (You can assume the correspondence between Boolean congruences and filters.)
- (b) Let (X, R) be the S4-space dual to \mathcal{B} . Characterize modal filters of \mathcal{B} in dual terms. (You can assume the correspondence between filters of B and closed subsets of X.)
- (c) Give a dual characterisation of subdirectly irreducible S4-algebras. (Consult Homework 5(2) for a dual characterization of subdirectly irreducible Heyting algebras.)
- (4) (10pt) Recall that an element $a \neq 0$ of a Heyting algebra A is completely join prime, if $a \leq \bigvee S$ for $S \subseteq A$, implies $a \leq s$ for some $s \in S$. (Alternatively A is completely join prime generated if for each $b \neq 0$, there is a completely join prime element $a \in A$ such that $a \leq b$.)
 - (a) Let (X, \leq) be a poset and let \mathcal{H} be the Heyting algebra of all upsets of X. Show that
 - (i) \mathcal{H} is complete,
 - (ii) \mathcal{H} is completely join prime generated i.e., every element *a* of \mathcal{H} is generated by completely join prime elements.
 - (b) Show that if a HA A is complete and completely join prime generated, then A is isomorphic to the Heyting algebra of all upsets for some poset (X, \leq) . (Hint: check the proof of the fact that every complete and atomic BA is isomorphic to the powerset BA.)
 - (c) Let A be a HA and X its dual Esakia space. Show that $a \in A$ is completely join prime iff $\varphi(a) = \uparrow x$ such that $\{x\}$ is a clopen set. (Note that the join if infinitely many clopen up-sets is not necessarily their union, see Homework 4(2)).
 - (d) (*) (Bonus +3pt) Can you characterize when A is completely join prime generated in (purely order-topological) terms of its dual X? (It might be useful to work with a set $X_0 = \{x \in X : \{x\} \text{ and } \uparrow x \text{ are clopen}\}$.)