MATHEMATICAL STRUCTURES IN LOGIC 2018 HOMEWORK 5

- Deadline: March 13 at the **beginning** of the tutorial class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Saul Fernandez (saul.fdez.glez@gmail.com).
- Grading is from 0 to 100 points.
- Discussion of problems is allowed, but each student should submit a homework they themselves have written.
- Good luck!
- (1) (20pt) Draw the (underlying poset of the) Esakia space dual to the Heyting algebra $\omega + 1$ shown below. Determine the clopen up-sets of this Esakia space.

- (2) (30pt) Let X be a poset. X is called *rooted* if there is $r \in X$ such that $X = \uparrow r$. Then r is called the *root* of X.
 - (a) Let X be a non-trivial Esakia space (i.e., $X \neq \emptyset$). Show that X is rooted if and only if in its dual Heyting algebra A for each $a, b \in A$ we have $a \lor b = 1$ implies a = 1 or b = 1.
 - (b) Call a rooted Esakia space X with a root r strongly rooted if $\{r\}$ is open. Show that an Esakia space X is strongly rooted if and only if the Heyting algebra dual to X has the second largest element. (Recall that in Hausdorff spaces every point is closed.)
 - (c) Give an example of a rooted Esakia space, which is not strongly rooted.
- (3) (30pt) Consider the ordered topological space (\mathfrak{X}, \leq) drawn below where the space \mathfrak{X} is the Alexandroff compactification $\alpha \mathbb{N}$ of \mathbb{N} . In other words, the clopen sets are finite subsets of \mathbb{N} and cofinite subsets of \mathbb{N} together with the point ∞ .

- (a) Show that this space is a Priestley space.
- (b) Show that it is not an Esakia space.
- (c) Draw the distributive lattice dual to this space.
- (4) (20pt) [From the final exam of 2017]
 - (a) Let (X, \leq) be an Esakia space. Show that for any up-set $U \subseteq X$ we have that its closure cl(U) is also an up-set.
 - (b) Give an example of a Priestley space (X, \leq) and an up-set $U \subseteq X$ such that its closure cl(U) is not an up-set.

Recall that if X is a Stone space and $x \in X$, then $x \in cl(U)$ iff for every clopen set V with $x \in V$ we have $V \cap U \neq \emptyset$.