Mathematical structures in logic Exercise class 2

Heyting algebras, Boolean algebras

February 13, 2018

- 1. Let A be a Boolean algebra. Show that $a \wedge b = \neg(\neg a \vee \neg b)$ and $a \vee b = \neg(\neg a \wedge \neg b)$.
- 2. We know that the lattice $(\operatorname{Fin}(\mathbb{N}) \cup \{\mathbb{N}\}, \subseteq)$ of finite subsets of \mathbb{N} (together with \mathbb{N}) is a complete bounded distributive lattice. Is it a Heyting algebra?
- 3. Let A_1, A_2 and A_3 be the following posets

- (a) Convince yourself that A_1, A_2 and A_3 are all Heyting algebras.
- (b) Identify the joins and the pseudo-complements in A_1 , A_2 and A_3 .
- (c) Is A_1 isomorphic to a bounded sublattice of A_2 or A_3 ? Is it isomorphic to a Heyting subalgebra of A_2 and A_3 ?
- 4. (Atoms and co-atoms) Recall that, if (L, \leq) is a bounded lattice, $a \in L$ is called an *atom* if b < a implies b = 0 and a *coatom* if a < b implies b = 1.
 - (a) Describe atoms and co-atoms on a Boolean algebra of the form $\mathcal{P}(X)$.
 - (b) Show that in every Boolean algebra, if a is an atom, then $\neg a$ is a co-atom.
 - (c) Find a Heyting algebra A with an atom a such that $\neg a$ is not a co-atom
- 5. Show that not every bounded distributive lattice is isomorphic to the lattice of upsets of some poset.
- 6. We abbreviate $a \to 0$ with $\neg a$. Show that in every Heyting algebra
 - (a) $a \wedge \neg a = 0$ but not necessarily $a \vee \neg a = 1$;
 - (b) $a \le b$ iff $a \to b = 1$;
 - (c) $a \leq \neg \neg a$;
 - (d) $\neg a \land \neg b = \neg (a \lor b);$
 - (e) $\neg a \lor \neg b \le \neg (a \land b)$ but not necessarily $\neg (a \land b) \le \neg a \lor \neg b$;
 - (f) $a \to (b \to c) = (a \land b) \to c$;
 - (g) $b \le c$ implies $a \to b \le a \to c$;

- (h) $b \le c$ implies $c \to a \le b \to a$.
- 7. A topological space is a pair (X, τ) where X is a set and $\tau \subseteq \mathcal{P}(X)$ is a collection of subsets of X such that
 - i. $\emptyset \in \tau$ and $X \in \tau$;
 - ii. If $U, V \in \tau$, then $U \cap V \in \tau$;
 - iii. If $\sigma \subseteq \tau$, then $\bigcup \sigma \in \tau$.

Given $P \subseteq X$, we can define the *interior of* P as Int $P = \bigcup \{U \in \tau : U \subseteq P\}$.

- (a) Prove that (τ, \subseteq) is a Heyting algebra.
- (b) Characterise $\bigvee \sigma$ and $\bigwedge \sigma$ for $\sigma \subseteq \tau$.

Additional exercises

- 8. Let A_2 and A_3 be as in exercise 1.
 - (a) Is A_2 isomorphic to a bounded sublattice of A_3 ? Is it isomorphic to a Heyting subalgebra of A_3 ?
 - (b) Is there a surjective bounded lattice homomorphism from A_3 to A_2 ? Is there a surjective Heyting algebra homomorphism from A_3 to A_2 ?
- 9. Let L be a bounded distributive lattice. Show that there is a 1-to-1 correspondence between pairs of complemented elements of L (i.e. pairs $\langle a,b\rangle\in L^2$ such that $a\wedge b=0$ and $a\vee b=1$) and decompositions of the form $L\simeq L_1\times L_2$ where L_1 and L_2 are bounded distributive lattices. (Hint: Try to understand first what this means for powerset lattices.)
- 10. For people who know some category theory: Given a poset (P, \leq) we can see it as a category having P as objects and there is a morphism from p to q iff $p \leq q$. Try to connect the notions of lattice theory that we encountered so far (suprema, infima, bounds, Heyting implications, complements, ...) to categorical structure (such as products, coproducts, ...).